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ATAYLOR TYPE TIIEOREM WITH LATERAL DERIVATIVE

Gabriclla KOVACS

In [1] 1= proved a Lagrange tvpe theorem reparding lateral derivatives, Our
gim 1% to [ormulate & Taylor tvpe result which deals with lateral derivative, and to
present an application under comivexity assumption.

Theorem 1 (Lagrange type) See [1].
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Remark. If we take right- ]mﬂ.d dmj'-'dilu: instead of left-hand derivative.
an amalogous of the Theorem 1 holds,

Remark. The lollowing function shows that admilling anx, & ]r.l,._’:]wh-m
S 15 omly lefi-hund eontinuons, the conclusion of the Theorem 1 iz not preserved.
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Remark. MNext function shows that supposing continuity only on ]c:-b]
mnstead of [.:.r,.":f, the comclusion of the Theovem | is not preserved.
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The [llowmg theorem iz a Taylor 1.}']:":' result wath a left-hand dervvative.
We will prove it by using Theorem 1.
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Theorem 2 (Tuvlor bype)

Let TR be an open interval. {f' the function 1§ — R is v times
diffrenticoble on L and
.".‘,-i' _."'":'1 ! is continuous on
fidf _,I"":": fas finite left-hand devivaiive [f':": }_i{_'r]l ateack re
then for every x,,x e, x, # x there exivt 7,77, € ]x.xci or 1.0, € Jr,.x]
such thar the cogfficient A defined by the relation
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Proofl. Let [ be an open interval of R Let /7 3 B e n tlimes
dilferentiable such that satisties (i) and (i)
For x,,x e T fixed let A be the coellicient defined by the equality (1).

Consider @7 = K,
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The properties of the fimetion f imply that ¢ is contmuons ‘ot T and has
fimite fefi-hand derivative @' {r] aleach f = 1.
By a simple computation we gn:l
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We have q‘]{.rjl = fl:.r} (1) wplies |;.*}|:.:r"} = _,nfl'll.} Thus f.ﬂl{.:.'" J = 1;]'1{.1:] ;
Apply Theorem 1 for the function ¢ on the interval ixn,x] in case of
x, < X . It results that there exist 5,8, € ].'c,_ ,.::I such that
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Since -;zﬂ:x,,] - -;r:[ﬂ =1, this means that
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Sinoe {-1’—% J* >0 and |{.J:—;"1 }I" =10, devidimg by {n [ ]jl we ohtain
inegqualitics (2} with ’.'I'|=§|1:'F; =,§:,

Apply Theorem 1 for the function @ on the interval [_r: J.'[,] in case of
x < x,. It results that there exist £, &£, & ].x, J.'"] such that (3) holds, In this case
x—& =0, x=&; <0 For neven we obtain (2) with 7,= £,.n, =£,. For nodd
we oblain (2} with #,= £, .1, =£ .

Hemark. Dcaling with right-hand derivative instead of lefl-hand
derivative, an analogous of the Theorem 2 can be formulated.

Smce # convex function is comtinuous and possess finite left-hand
dentvative (as well as [mie nghl-hand dernvative) at every imterior point of its
domain, the following result holds ss an immediate consequence of Theorem 2,

Corollary 1. Led § 14 — R be o times differendiable on the apen interval
fc R.Af the function j""":' A = R iy convex, then for every X, xel, %, # X

there exise iy, 0, € }x,;r.:,] or ., € ]3:[,,.2':] such that the coefficient A defined
by the Tavlor nepe relation (1} verifies inequalities (2]

Since the left-hand denivative of a convex function (as well as ils right-
hand derivative} is increasing on the interior of the domain of the function. the
[llowing corollary holds.

Corollary 2. Let the finction [ 0] — R be w times differeniiable on the
open dnterval T R che fimetion _j"":":' = R s convex, then for every
r.xel, x, #x the cocfficient A defined by the Taylor tvpe relation (1) satisfies
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Remark. Taking rpght-hand denvabve instead of left-hand derivative in
those corallaries, we obtain analogous resulls.
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Abstract. In this note we formulate a Tayvlor tvpe result which deals with a
lateral derivative; see Theorem 2. Then we pive an application under convexity
assumption; see Corollary 2
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