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On some inequalities for right triangles

Ovidiu T. Pop and Constantin Voicu

Abstract. We will prove some inequalities between the elements of a right triangle.

In any ABC right triangle we denote AB = c, BC = a, CA = b, and

A,B, C be the angles of the triangle, p = a + b + c
2 the semiperimeter,

r, ra, R the radii of incircle, excircle corresponding to BC and circumcir-
cle of ABC, respectively.

Proposition 1. In any ABC triangle we have
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Thus r2+ar tg A
2 = (p−b)(p−c), is equivalent to 4r2+4ar tg A
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Identity (2) can be obtained from (1) by changing sides a, b, c in the sinus
theorem. Relation (3) results from (2) after calculations. �

Proposition 2. In any ABC triangle take place the following inequalities:
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Equality in any of the inequalities (4) − (7) can be obtained if and only if
B = C.
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hence results (6).
We get (7) out of (6) considering that a = 2R sinA. �

Corollary 1. In the ABC triangle, µ(Â) =
π

2
, we have

R

2
≥
√

2 + 1 (Emmerich’s inequality) (8)

and equality can be obtained if and only if ABC is an isosceles triangle.
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Proof. We obtain it out of (5) or (7) because µ(Â) = π
2 . �

Observation 1. Inequality (5) is proved by [2] and [4].

Proposition 3. In any ABC triangle we have:
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fig 1. Variation chart

and hence the relations (9)-(11). �

Observation 2. Inequalities (9), (10) are equal if and only if µ(Â) = π
2 .
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Proposition 4. In any ABC triangle we have:
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Proof. By changing a = 2R sinA and the analogous, in relations from Propo-
sition 3 we get Proposition 4. �

Observation 3. Relations (12)-(14) can be found in [2].

Proposition 5. In any ABC triangle we have
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2
and B = C . (15)

R

r
≥ 1

sinA

(√
2− tg A

2

) if and only if µ(Â) ≤ π
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Proof. Inequality (15) can be obtained from inequality (2.). Inequality (16)
can be obtained from (15) considering that (sinB − sinC)2 ≥ 0. �

Corollary 2. In any kind of ABC triangle takes place the relation
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We have sinA

(√
2− tg A

2

)
≥ 2 sin A

2

(
1− sin A

2

)
, equivalent to

2 sin A
2

(√
2 cos A

2 − sin A
2

)
≥ 2 sin A

2

(
1− sin A

2

)
, equivalent to

cos A
2 ≥

√
2

2 , equivalent to A
2 ≤ π

4 , hence µ(Â) ≤ π
2 . �

Proposition 6. In any ABC triangle we have
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Proof. We prove relation (18) considering r = s
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relation (19)from relations (1) and (18). Identity (20) can be obtained from
(19) by changing sides a, b, c in sine theorem. Identity (21) can be obtained
from identity (20). �

Proposition 7. In any kind of ABC triangle we know
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and equality in any of (22)− (24) inequalities can be obtained if and only if
B = C.
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Proof. Considering 0 ≤ cos B − C
2 ≤ 1, from relation (21) results (22).
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Corollary 3. In the ABC triangle, µ(Â) = π
2 we have

R
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and equality can be obtained if and only if ABC is a right isosceles triangle.

Proof. It can be obtained from inequalities (22) or (24) for µ(Â) = π
2 . �

Corollary 4. In the ABC triangle, µ(Â) = π
2 , takes place
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and equality is obtained if and only if ABC is a right isosceles triangle.

Proof. It results from inequalities (8) and (25). �

Proposition 8. In any ABC triangle we have
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and we have the variation chart in figure 2.
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fig 2. Variation chart
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Hence we get relations (27)-(29). �

Proposition 9. In any ABC triangle we have
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Proof. By changing a = 2R sinA and analogous in relation from Proposition
8, we obtain Proposition 9. �

Corollary 5. In any ABC triangle we have
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Proof. Inequality
√

2− 1 ≤
√
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is true.

Since (sinB − sinC)2 ≥ 0 results 1√
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≥
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2 sin2 A + sinA

= 1
sin A
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and we also take into

account (30). �

Observation 4. We obtain Corollary 3 from Corollary 5.

References
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Colegiul Naţional ”Mihai Eminescu”
Mihai Eminescu 5, 440014 Satu Mare
Romania
E-mail address: ovidiutiberiu@yahoo.com

Constantin Voicu
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