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Using Prolog for the study of algebraic
structures and complex operations

Dan Popa

Abstract. Should mathematicians learn the Prolog language? Due to its ability of
modeling algebraic structures having complex operations and its backtracking algorithm
able to scan a search space looking for solutions, Prolog becomes a great tool to study
complex algebraic structures. The model of interactions between compilers when computer
scientists are attempting to bootstrap a system or to create a new language or a new
compiler is such an algebraic structure. This paper tries to answer “yes” our previous
question.

1. Introduction

The goal of this paper is to introduce a new methodology of work, intended
to be available for the mathematicians which are interested in complex al-
gebraic structures, meaning algebraic structures with complex operations. I
refer to such operations of which flow of calculus is escaping from the chains
of our intuition. In such an algebra, even to verify a calculus might be a
terrible work. The methodology, as it is, is directly usable for works on finite
sets but it can can also give us the base of the proofs by inductions which
have to be made in order to “conquer” infinite sets having the same cardinal
as the natural numbers set. The following results are selected from the alge-
braic part of a research concerning compilers, interactions of the translators
and the extensibility of the programming languages. I wish to send all my
gratitude to Professor D.Todoroi from ASEM (Republic of Moldova) for the
subject of research which was the starting point of this work.

2. Requested Items

In order to practice this kind of research you will need:
- the object of the study, I mean an algebraic structure having one ore

more complex operations. For example, I needed to study the compilers
interactions.

- a computer (Actually, last year, I used an old Intergraph TD3 Worksta-
tion having an 150Mhz Pentium Processor, 64Mb RAM and a 1GB SCSI
disk drive). Any modern PC can be used, but a better one will be more
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practical, because of the increased speed. It will make symbolic calculation
instead of you.

- a Prolog Interpreter or a Prolog Compiler. I used Turbo Prolog 2.0 pro-
duced years ago by Borland. Any other implementation of the Prolog
Language may be used, but the syntax of an other Prolog dialect may be
just a bit different.

- a manual of the Prolog language. From it you will be able to learn how can
you translate an algebraic operation as a Prolog clause. Some particularity
aspects concerning the version of the Prolog language you are planning to
use can be find in such a manual. You may or you may not need it. The
translation of algebraic operations as Prolog clauses looks very natural to
me.

- a result obtained by calculations in that algebra - it will be the goal, the
thing to be proved.

- an example of an algebraic operation translated in Prolog. This paper
contains such an example. Let’s see it:

3. Algebraic operations studied in this paper

Two different interactions of compilers had been studied. Both of them
can produce a compiler by combining somehow a pair of other compilers.
The algebraic operations were called ”/” respectively ”o”. In this study
a compiler is written as an implication Li -> Lj(Lk). Practically, for the
algebraist, it consists in an ordered set of three values (i, j, k) which means,
in fact, an ordered set of three languages, (Li, Lj , Lk) selected from a large,
indexed set or an indexed hierarchy of extensible languages. Semantically
speaking, the ordered set (Li, Lj , Lk) represents a translator from the Li

language to the Lj language written in the Lk language. The translator is a
program, so it had been written in a language, too.
From the point of view of a mathematician, we have the definitions:
Li−> Lj(Lk) / Lj−> Lm(Lk) => Li =>Lm(Lk)
Li−> Lj(Lk) ◦ Lk−>Lm(Ln) =>Li−>Lj(Lm)
where the ”=>” sign shoul be read as ”equal by definition” or ”from that
composition we get...” (Let’s remark that somebody which is familiar with
the compilers interactions will recognize the first operation as the cascaded
link of two compilers and the second as the compilation of one compiler with
an other.)

4. How can algebraic operations be translated in Prolog?

Let’s take an example. The second operation, noted as ”◦” is defined as
Li−>Lj(Lk) ◦ Lk−>Lm(Ln) =>Li−>Lj(Lm). In fact it means that
X−>Y (Z) ◦ Z−>T (M) =>X−>Y (T ) for every set of four languages
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X, Y, Z, T .
Using Prolog, the implication can be written as a clause of a predicate. As
name for the predicate I have used “compile”. An other predicate, “existaL”
is expressing the fact that a language L is available in the modeled universe.
When using a hierarchy of languages, “existaL” means “L belongs to the
set of languages of the hierarchy”. Practically it is used by Prolog as a
“come back and try again” point for the backtracking algorithm of the Prolog
interpreter. Let’s see how the rule was translated as sample of code:

compile(X,Y,T) if existaL(X),
existaL(Y),
existaL(Z),
existaL(T),
existaL(M),
compile(X,Y,Z),
compile(Z,T,M).

Let’s remark the fact that both operands become predicates in the clause
(last two lines) and the conclusion is written as the head of the clause,
followed by “if” which can be seen as a translation of “=>”.

5. What kind of problems can be solved by a program?

Depending of the goal of the Prolog program, the Prolog interpretor or
the machine code generated by the Prolog Compiler, when running, will
try to discover the chains of clauses which stars from the hypothesis (the
existed language and algebraic values) and lead to the desired conclusion.
The conclusion itself may have variables as arguments. In this case, the
resulted output will contain the list of all substitutions which can make the
goal true, in that world created by hypothesis.

In fact, during our research, the Prolog programs which have been written
was able to answer questions like this:
- How could the author of an other proof have reached a specific result?

What calculus leads to his or her conclusion ?
- Can we get a specific value as a result of a calculus, which such algebraic

operations and in specific hypothesis?
- If a new operation (or operator) is introduced in the problem’s universe,

can we get now a specific result, involving all the operations?
- Did an other sequence of operations leading to the same value exist ? How

the list of all possible sequences looks like?
- Being given a specific theorem involving calculations in such a structure,

is this theorem valid for a set of finite cases? (Let’s remark that missing
of solution in only one case may make the generalized theorem false. But,
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for a mathematician, to build an example of failure for a supposed valid
theorem may sometimes be difficult).

6. Tips and tricks

The chains of rules like: A if B, B if A, ..., A if B, ..., should be avoided.
For example, we are able to do this by defining an order for the arguments
of the predicates (not for the studied algebraic structure). Let’s take an
example.
When using a hierarchy of languages, the new developed compilers for the
new extended languages of the hierarchy will be placed on the upper levels.
We will be able to write clauses with inequalities, like this one:

compile(X,Y,T) if existaL(X),
existaL(Y),
existaL(Z),
existaL(T),
existaL(M), X > Y, Z > T,
compile(X,Y,Z),
compile(Z,T,M).

In such case, the language will be represented by their numbers in the hier-
archy, as arguments. And the inequalities will prevent the cyclic reasoning.
In fact more other constrains can be introduced in the Prolog clauses, in
order to reduce the search space and to avoid cyclic reasoning. For example,
during our research we had noticed that the second compiler should run on
a real machine. It means that LM is placed in the M = −1 position of the
hierarchy. The clause were consequentially rewritten:

compile(X,Y,T) if existaL(X),
existaL(Y),
existaL(Z),
existaL(T),
X > Y, Z > T,
compile(X,Y,Z),
compile(Z,T, -1),
write(“L”, X , ”-> L” , Y , “( written in L”, Z, ”) ”),
write(“L”, Z , “-> L” , T , “( written in L1) ” ),
write(“ by translating the compiler => ” ),
write(“L”, X, “-> L”, Y, ” ( written in L” , T, ”) ”),
readln( ).

Notice the presence of the I/O predicates “write” and “readln”. Their side
effects are similar with the effects of the same words of Pascal like languages.
When the program is running, an output will be displayed and a key should
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be pressed in order to continue.
When a program like above is running, all the sequences of algebraic op-
erations will be displayed. The successful search message which began by
“Solution:..” is displayed by a ”write” predicate included by the “goal” of
the Prolog program.
The final output gave to me by the computer was the following, where a
solution consists in a chain of operations.

L1−>L0 (written in L0) L0−>L1(written in L1) translating the compiler

=> L1−> L0 (written in L1)

Solution: L1−>L0 (written in L1)

L1−>L0 (written in L0) L0−>L1 (written in L1) translating the compiler

=>L1−>L0 (written in L1)

L2−>L0 (written in L1) L1−> L0 (written in L1) translating the compiler

=> L2−> L0 (written in L0)

L2−>L0 (written in L0) L0−>L1 (written in L1) translating the compiler

=>L2−>L0 (written in L1)

Solution: L2−>L0 (written in L1)

L1−>L0 (written in L0) L0−>L1 (written in L1) translating the compiler

=>L1−>L0 (written in L1)

L2−>L0 (written in L1) L1−> L0 (written in L1) translating the compiler

=>L2−>L0 (written in L0)

L2−>L0 (written in L0) L0−> L1 (written in L1) translating the compiler

=>L2−>L0 (written in L1)

L3−>L0 (written in L2) L2−> L0 (written in L1) translating the compiler

=>L3−>L0 (written in L0)

L3−>L0 (written in L0) L0−> L1 (written in L1) translating the compiler

=>L3−>L0 (written in L1)

Solution: L3−>L0 (written in L1)

...

You may see how the computer proving the fact that values like Ln−> L0

(L1), where n is 1,2,3, may be obtained in our hypothesis, i.e. by combining
the given translators. In fact it has just rebuild the calculus from a given
theorem. In this case there is a lemma from the paper of Diana Micuşa,
called the ND Lemma or LD Lemma (depending of the language in which
the paper is written). In fact the proof should be completed by human mind,
because the computer can only verify a finite number of cases. The step of
going from n to n+1 has to be made by the mathematician himself /herself,
with the help of this examples. This is an easier task, because the computer
may give us any examples we wish.
Warning: The search space usually grows up exponentially with the dimen-
sion of the stack of languages. In our study, for the value n = 12, it takes
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more than an hour to complete the search space.
Remark: Using the computer we are thrown from an extreme to an other. At
the start point we do not now how to combine the values, using operations
to perform calculation and get the result but, after the use of the computer,
we can get more examples than we need!

A complete program

We have picked one example (the 17th), from our research. Here it is:

domains

predicates

existaL(integer)

compile(integer,integer,integer)

compile2(integer,integer,integer)

rulez(integer)

clauses

existaL(-1).

existaL(0).

existaL(1).

existaL(2).

existaL(3).

existaL(4).

existaL(5).

existaL(6).

existaL(7).

existaL(8).

existaL(9).

existaL(10).

existaL(11).

existaL(12).

rulez(-1).

rulez(X) if compile2(X,-1,-1),

write("Programs written in L can run", X),

readln( ).

compile(0,-1,-1).

compile(X,0,Y) if existaL(X),

existaL(Y),Y>=0,

Y=X-1.

compile(X,Y,T) if existaL(X),

existaL(Y),

existaL(Z),

existaL(T),
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X>Y,

Z>T,

compile(X,Y,Z) ,

compile(Z,T,-1),

write("L", X, "-> L" , Y , " (written in L", Z, ") "),

write("L", Z, "-> L" , T , " (written in L1) " ),

write(" translating the compiler =>" ),

write("L", X, "-> L" , Y , "( written in L", T, ")" ),

readln( ).

compile2(0,-1,-1).

compile2(X,0,Y) if existaL(X),

existaL(Y),

Y>=0,

Y=X-1.

compile2(X,Y,T) if existaL(X),

existaL(Y),

existaL(Z),

existaL(T),

X>Y,

Z>T,

compile2(X,Y,Z) ,

compile2(Z,T,-1),

readln( ).

goal

compile(X,0,-1),

write(" Solution: L", X, "-> L0","(written in L1)"),readln( ), fail

Let’s remark the ”goal” finished by the special predicate ”fail” which forces
the Prolog system to begin backtracking, searching for an other solution.

7. Conclusion

The research of complex algebraic structures was enriched with an un-
expected tool: the Prolog language. To study such structures, especially
to check calculus and to search for solutions may be made faster using a
computer. A part of the results of our research (the methodology shown
here being excluded) was presented as a paper called ”Results concerning
interactions between compilers and interpreters” in section 14, ”Cybernetics
and IT Technologies” of the ”International Meeting of Young Researchers”,
18-19 of April 2003 in Chişinău, Republic of Moldova.
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