CREATIVE MATH.

```
13 (2004),
1-4
```


On the rate of convergence of Archimedean double sequences

Iulia Costin and Gheorghe Toader

Abstract. Let M and N be two means. The pair of sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ defined by

$$
a_{n+1}=M\left(a_{n}, b_{n}\right), b_{n+1}=N\left(a_{n+1}, b_{n}\right), n \geq 0
$$

is called an Archimedean double sequence. We study the rate of convergence of these sequences to a common limit.

1. Introduction

There are more definitions of means. We use here the following one.
Definition 1. A mean (on the interval J) is defined as a function $M: J^{2} \rightarrow J$, which has the property

$$
\min (a, b) \leq M(a, b) \leq \max (a, b), \forall a, b \in J
$$

The mean M is called symmetric if

$$
M(a, b)=M(b, a), \forall a, b \in J
$$

We shall refer to weighted Gini means, defined by

$$
\mathcal{B}_{r, s ; \lambda}(a, b)=\left[\frac{\lambda \cdot a^{r}+(1-\lambda) \cdot b^{r}}{\lambda \cdot a^{s}+(1-\lambda) \cdot b^{s}}\right]^{\frac{1}{r-s}}, r \neq s
$$

and

$$
\mathcal{B}_{r, r ; \lambda}(a, b)=\left[a^{\lambda \cdot a^{r}} \cdot b^{(1-\lambda) \cdot b^{r}}\right]^{\frac{1}{\lambda \cdot a^{r}+(1-\lambda) \cdot b^{r}}}
$$

with $\lambda \in[0,1]$ fixed. They are symmetric only for $\lambda=1 / 2$. If $s=0$ we get the special case of weighted power means.

We shall use the following results regarding the partial derivatives of means and which can be found in [7].

Theorem 1. If M is a differentiable mean then

$$
\begin{equation*}
M_{a}(c, c)+M_{b}(c, c)=1 \tag{1}
\end{equation*}
$$

and

$$
0 \leq M_{a}(c, c) \leq 1
$$

As a special case we get the next result proved in [4].

Received: 19.09.2004. In revised form: 21.12.2004.
2000 Mathematics Subject Classification. 26E60.
Key words and phrases. Archimedean double sequences, rate of convergence.

Corollary 1. If M is a symmetric differentiable mean then

$$
M_{a}(c, c)=M_{b}(c, c)=1 / 2
$$

Remark 1. For non symmetric means, this property is not valid. For example, for $M=\mathcal{B}_{r, s ; \lambda}$, we have

$$
M_{a}(c, c)=\lambda
$$

2. Archimedean double sequences

The well known Archimedes' polygonal method of evaluation of π, was interpreted in [5] as a double sequence. This led to the next definition. Let us consider two means M and N defined on the interval J and two initial values $a, b \in J$.
Definition 2. The pair of sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ defined by

$$
\begin{equation*}
a_{n+1}=M\left(a_{n}, b_{n}\right) \text { and } b_{n+1}=N\left(a_{n+1}, b_{n}\right), n \geq 0 \tag{2}
\end{equation*}
$$

where $a_{0}=a, b_{0}=b$, is called an Archimedean double sequence.
Definition 3. The mean M is composible in the sense of Archimedes (or A-composible) with the mean N if the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ defined by (2) are convergent to a common limit $M \boxtimes N(a, b)$ for each $a, b \in J$.

Remark 2. In this case $M \boxtimes N$ is also a mean on J called Archimedean compound mean (or A-compound mean).

Remark 3. The classical case of Archimedes corresponds to the composition $\mathcal{H} \boxtimes \mathcal{G}$, where \mathcal{H} and \mathcal{G} denote the harmonic mean, respectively the geometric mean, defined by

$$
\mathcal{H}(a, b)=\frac{2 a b}{a+b}, \mathcal{G}(a, b)=\sqrt{a b}, \forall a, b>0
$$

As was determined in [5], if $0<b_{0}<a_{0}$, the common limit of the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ is

$$
\mathcal{H} \boxtimes \mathcal{G}\left(a_{0}, b_{0}\right)=\frac{a_{0} b_{0}}{\sqrt{a_{0}^{2}-b_{0}^{2}}} \arccos \frac{b_{0}}{a_{0}}
$$

In Archimedes' case, as

$$
a_{0}=3 \sqrt{3} \text { and } b_{0}=3 \sqrt{3} / 2
$$

the common limit is π.

3. Rate of convergence

In the case of classical Archimedean algorithm it is shown that the error of the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ tend to zero asymptotically like $1 / 4^{n}$. In [4] is proved that this result is valid in the case of A-composition of arbitrary differentiable symmetric means. For the general case, we have the following evaluation.

For two means M and N given on the interval J and two initial values $a, b \in J$ we denote

$$
\alpha=M \boxtimes N(a, b) .
$$

Theorem 2. If the means M and N have continuous partial derivatives up to second order, then the errors of the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ tend to zero asymptotically like

$$
\left[M_{a}(\alpha, \alpha) \cdot\left(1-N_{a}(\alpha, \alpha)\right)\right]^{n}
$$

Proof. If we write

$$
a_{n}=\alpha+\delta_{n}, b_{n}=\alpha+\varepsilon_{n}
$$

we deduce that, as $n \rightarrow \infty$,

$$
\begin{gathered}
\alpha+\delta_{n+1}=M\left(\alpha+\delta_{n}, \alpha+\varepsilon_{n}\right) \\
=M(\alpha, \alpha)+M_{a}(\alpha, \alpha) \delta_{n}+M_{b}(\alpha, \alpha) \varepsilon_{n}+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right)
\end{gathered}
$$

From (1) we get

$$
\begin{equation*}
\delta_{n+1}=M_{a}(\alpha, \alpha) \delta_{n}+\left[1-M_{a}(\alpha, \alpha)\right] \varepsilon_{n}+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right) \tag{3}
\end{equation*}
$$

Then

$$
\begin{gathered}
\alpha+\varepsilon_{n+1}=N\left(\alpha+\delta_{n+1}, \alpha+\varepsilon_{n}\right) \\
=N(\alpha, \alpha)+N_{a}(\alpha, \alpha) \delta_{n+1}+N_{b}(\alpha, \alpha) \varepsilon_{n}+O\left(\delta_{n+1}^{2}+\varepsilon_{n}^{2}\right)
\end{gathered}
$$

Using again (1) and (3) we have

$$
\varepsilon_{n+1}=N_{a}(\alpha, \alpha)\left[M_{a}(\alpha, \alpha) \delta_{n}+\left(1-M_{a}(\alpha, \alpha)\right) \varepsilon_{n}\right]
$$

$$
\begin{align*}
& +\left[1-N_{a}(\alpha, \alpha)\right] \varepsilon_{n}+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right), \text { thus } \\
& \quad \varepsilon_{n+1}=M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha) \delta_{n}+\left[1-M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha)\right] \varepsilon_{n}+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right) \tag{4}
\end{align*}
$$

Subtracting (4) from (3) we get

$$
\delta_{n+1}-\varepsilon_{n+1}=M_{a}(\alpha, \alpha)\left[1-N_{a}(\alpha, \alpha)\right]\left(\delta_{n}-\varepsilon_{n}\right)+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right)
$$

On the other hand, from the monotonicity of $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ we can suppose that $\delta_{n}>0$ and $\varepsilon_{n}<0$ for all $n>0$. The case when $\delta_{n}<0$ and $\varepsilon_{n}>0$ can be treated similarly. We have

$$
\frac{\varepsilon_{n}-\varepsilon_{n+1}}{\delta_{n}-\delta_{n+1}}=\frac{M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha)\left(\varepsilon_{n}-\delta_{n}\right)+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right)}{\left[1-M_{a}(\alpha, \alpha)\right]\left(\delta_{n}-\varepsilon_{n}\right)+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right)}
$$

thus

$$
\varepsilon_{n}-\varepsilon_{n+1}=\frac{M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha)}{M_{a}(\alpha, \alpha)-1}\left(\delta_{n}-\delta_{n+1}\right)+\left(\delta_{n}-\delta_{n+1}\right) O\left(\left|\delta_{n}\right|+\left|\varepsilon_{n}\right|\right) .
$$

Replacing n by $n+1, n+2, \ldots, n+p-1(p \in \mathbb{N})$, adding and using the fact that δ_{n} and ε_{n} tend monotonically to zero, we obtain

$$
\varepsilon_{n}-\varepsilon_{n+p}=\frac{M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha)}{M_{a}(\alpha, \alpha)-1}\left(\delta_{n}-\delta_{n+p}\right)+\left(\delta_{n}-\delta_{n+p}\right) O\left(\left|\delta_{n}\right|+\left|\varepsilon_{n}\right|\right)
$$

Letting $p \rightarrow \infty$ we get

$$
\varepsilon_{n}=\frac{M_{a}(\alpha, \alpha) N_{a}(\alpha, \alpha)}{M_{a}(\alpha, \alpha)-1} \delta_{n}+O\left(\delta_{n}^{2}+\varepsilon_{n}^{2}\right)
$$

Using (3) we deduce that

$$
\delta_{n+1}=M_{a}(\alpha, \alpha)\left[1-N_{a}(\alpha, \alpha)\right] \delta_{n}+O\left(\delta_{n}^{2}\right)
$$

and from (4) we have

$$
\varepsilon_{n+1}=M_{a}(\alpha, \alpha)\left[1-N_{a}(\alpha, \alpha)\right] \varepsilon_{n}+O\left(\varepsilon_{n}^{2}\right)
$$

Remark 4. In the case of symmetric means, we saw that

$$
M_{a}(\alpha, \alpha)=N_{a}(\alpha, \alpha)=\frac{1}{2}, \forall \alpha \in J
$$

and we get the result proved in [4]:
Corollary 2. If the means M and N are symmetric and have continuous partial derivatives up to second order, then the error of the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ tend to zero asymptotically like $1 / 4^{n}$.
Example 1. For $M=\mathcal{B}_{r, s ; \lambda}$ and $N=\mathcal{B}_{p, q ; \mu}$, the sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ tend to zero asymptotically like $[\lambda(1-\mu)]^{n}$.
Remark 5. In [2] will be given a method of acceleration of the convergence, that is, it will be constructed a combination of the sequences which converges faster than each of them. For some symmetric means, such a method was used even in [6].

References

[1] Bullen, P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht/ Boston/ London, 2003
[2] Costin, I., Acceleration of the convergence of Archimedean double sequences, Mathematical Analysis and Approximation Theory (2004), Mediamira Science Publisher (to appear)
[3] Foster, D. M. E., Phillips, G. M., The approximation of certain functions by compound means, Proc. of NATO Adv. Study Inst., St. John's Newfoundland, 1983
[4] Foster, D. M. E., Phillips, G. M., A generalization of the Archimedean double sequence, J. Math. Anal. Appl., 110(2) (1984), 575-581
[5] Phillips, G. M., Archimedes the numerical analyst, Amer. Math. Monthly 88(3) (1981), 165169
[6] Snell, W., Cyclometricus, Leyden, 1621
[7] Toader, S., Derivatives of generalized means, Math. Inequ. \& Appl. 5(3) (2002), 517-523
Technical University of Cluj-Napoca
Department of Computer Science
Department of Mathematics
Baritiu 28, 400027 Cluj-Napoca, Romania
E-mail address: Iulia.Costin@cs.utcluj.ro
E-mail address: Gheorghe.Toader@math.utcluj.ro

