
CREATIVE MATH.
13 (2004), 5 - 10

A Theorem of Division with a Remainder in a Set
of Polynomials with Several Variables

Marcel Migdalovici

Abstract. The set of polynomials of several variables with coefficients in factorial ring (such
as the integers ring) has not provided a structure of Euclidean ring and implicitly do not permit

Euclid algorithm to perform the greatest common divisor of two or more polynomials.

In this work is performed a division theorem with a remainder in the set of polynomials of
several variables with coefficients in a factorial ring.

This theorem underline the possibility to do a new definition of Euclidean ring and a new

algorithm to perform the greatest common divisor of two or more polynomials of several variables.
The algorithm for performing the greatest common divisor of polynomials with several variables

may be used to determine an analytical inverse matrix for a matrix of such polynomials that

intervene in a mathematical modeling of mechanical phenomena.

1. Introductional notions

A unitary and commutative ring K without divisors of zero is named an integral
domain. We write briefly K i.d.

Let K a factorial ring, therefore an integral domain with the property that every
non zero and non invertible element of K is a product of prime elements of K. We
write K f.r.

If a, b ∈ K we say that a divide b if b = ac with c ∈K and will write a | b.
A non zero and non invertible element p ∈ K is named “prime” if for any a, b ∈ K

with p | ab it results p | a or p | b.
An element c ∈ K (if exist) is named a greatest common divisor of a and b if

c | a, c | b and if d | a, d | b then d | c. Is denoted c = (a, b).
If d1 = (a, b), d2 = (a, b) then exists u ∈ K, invertible such that d1 = ud2.
Two elements d1, d2 ∈ K such that exists u ∈ K invertible, with d1 = ud2 are

named adjoints in divisibility.
The elements a, b ∈ K such that (a, b) = 1 are named relatively prime.
The ring of polynomials of one variable with coefficients in K is denoted by K[X]

and the ring of polynomials of several variable X1, . . . , Xn with coefficients in K is
denoted by K[X1, ..., Xn].

If K i.d. and f∈K[X] of the form

f = ao + a1X + . . . + anXn (1.1)

is denoted by c(f) ∈ K the greatest common divisor (g.c.d.) for the coefficients
ai ∈ K, (i = 1, . . . , n) of polynomial f .

If f ∈ K[X] is of the form (1.1) and a ∈ K with a | f then a | ai, i = 1, . . . , n
where ai ∈ K.
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If g ∈ K[X] and c(g) = 1 we say that g is primal polynomial.
Is denoted by K0[Xm] the ring of polynomials in indeterminate Xm over ring

K0 = K[X1, ..., Xm−1, Xm+1, ..., Xn] where m ≤ n. A polynomial g ∈ K0[Xm] is of
the form

g = b0 + b1Xm + · · ·+ bnXn
m (1.2)

where b0, b1, . . . , bn ∈ K0 are polynomials from the ring
K[X1, . . . , Xm−1, Xm+1, . . . , Xn].

If K is i.d. then K[X] is i.d. and if K is f.r. then K[X] is f.r.
If K is f.r., f, g, h ∈ K[X] and f, g are relatively prime such that f | gh then

f | h.
We will use the following property [1]:

Theorem 1. Let f and g 6= 0 be polynomials in R[X], R a ring, and let p be degree
and bp the leading coefficient of g. Then there exists a k ∈ N and polynomials q
and r ∈ R[X] with deg r < deg g such that

bk
pf = qg + r (1.3)

where k = max(0, deg f − deg g + 1).

2. A division with a remainder theorem for K[X1, . . . , Xn]

Let K factorial ring and 0 < m ≤ n, with m,n ∈ N.
We formulate bellow the following:

Theorem 2. If a polynomials p1, p2 ∈ K[X1, . . . , Xn], p1 6= 0, p2 6= 0, for fixed
m exists a polynomials q1, q2, r ∈ K[X1, . . . , Xn], uniques without a adjointly in
divisibility, such that

p1q1 = p2q2 + r (2.4)
where r = 0 or deg r < deg p2, with degree refereed to variable m.

The polynomials q1, q2, r are relatively prime and q1 6= 0.

Proof. In the following all polynomials are considered as polynomials in the variable
Xm. If deg p1 < deg p2 the relation (2.4) is determined by considering q1 = 1, q2 = 0,
r = p1.

For deg p1 ≥ deg p2 we use the relation (1.3) of the theorem 1, where R[X] is
K0(Xm) is the ring of polynomials with variable Xm with coefficients from K0 in
the variables Xi, i = 1, . . . , n, i 6= m,

bk
pp1 = qp2 + r∗ (2.5)

where bp is the leading coefficient of p2 refereed to variable Xm, that is bp is polyno-
mial from the ring K[X1, . . . , Xm−1, Xm+1, . . . , Xn], and where k = max(0,deg p1−
deg p2 + 1).

Let d be the greatest common divisor of polynomials bk
p and q as the polynomials

of ring K[X1,. . . , Xn]. Because bk
p is a polynomial no more than n − 1 variables

then d is a polynomial no more than n − 1 variables. Polynomial d is also divisor
of polynomial r∗ because

bk
pp1 − qp2 = r∗. (2.6)
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We simplify the relation (2.5) with polynomial d and it follows:

q1p1 = q2p2 + r (2.7)

where are denoted by q1 , q2 and r the polynomials bk
p q, respectively r∗ divided by

d.
The polynomials q1, q2, r are relatively prime from your deduction and q1 6= 0

because p2 6= 0.
We study the uniqueness of the relationship (2.4). Suppose the existence of the

second division relationship of the polynomials p1 and p2 such that

p1q
′
1 = p2q

′
2 + r′ (2.8)

where the polynomials q′1, q′2, r′ are relatively prime and q′1 6= 0.
From (2.4) and (2.8) it follows that

p2(q′1q2 − q1q
′
2) = r′q1 − rq′1 (2.9)

If q′1q2 − q1q
′
2 6= 0 then deg(r′q1 − rq′1) ≥ deg p2 as polynomials in Xm.

But deg r < deg p2 and deg r′ < deg p2 then deg(r′q1 − rq′1) < deg p2.
Contradiction. It follows q′1q2 − q1q

′
2 = 0 and r′q1 − rq′1 = 0.

Because q1 | q′1q2 and q1, q2 are relatively prime it follows that q1 | q′1. Analogue,
from r′q1 = rq′1 and q′1 | r′q1 with q′1, r′ relatively prime, we deduce that q′1 | q1

such that q1 and q′1 are adjointly in divisibility.
From r′q1 = rq′1 and q1, q′1 adjointly in divisibility, it follows that r, r′ are

adjointly in divisibility. �

3. The Euclid’s type algorithm in the factorial ring K[X1, . . . Xn]

We suppose that K is factorial ring and 0 < m ≤ n, with m,n ∈ N .
Let p1, p2 ∈ K[X1, . . . , Xn], p1 6= 0, p2 6= 0. From the second theorem, for fixed

m exists a polynomials q1, q2, r ∈ K[X1, . . . , Xn], uniques without a adjointly in
divisibility, such that

p1q1 = p2q2 + r (3.10)
where r = 0 or deg r < deg p2, with degree refereed to variable m.

The polynomials q1, q2, r are relatively prime and q1 6= 0.
There is the following property:

Theorem 3. In the conditions of second theorem, is true the equality
D(p1, p2)=D(p2, r), where r is the remainder of the division of the polynomials p1

and p2, and where D(f, g) is the set of polynomials greatest common divisors of f
and g.

Proof. We suppose, for beginning, that p1 and p2 are primal polynomials. It is
sufficiently to provide the property for the set of prime divisors.

Let d ∈ D(p1, p2), d prime polynomial and d | p1, d | p2. But r = p1q1 − p2q2.
Then d | r and thus d ∈ D(p2, r), such that D(p1, p2) ⊆ D(p2, r).

Conversely, let d be prime polynomial, d ∈ D(p2, r). Then d2 and d | r. Thus
d | p1q1 because p1q1 = p2q2 + r. But d is prime polynomial, therefore d | p1 or
d | q1. Because d | p2 and p2 primal polynomial it follows d is primal polynomial.
If d | q1 than d is polynomial independent of Xm and because d | p2 it follows d
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divide the coefficients of p2. Contradiction, because p2 is primal polynomial. Then
d | p1, such that d ∈ D(p1, p2). Thus D(p1, p2) ⊇ D(p2, r).

We denote by D′(p1, p2) the set of polynomials common divisors of coefficients
for p1 and p2.

If p1, p2 are not primal polynomials and d, prime polynomial, divide the co-
efficients of polynomials p1 and p2 then d divide the polynomial r and thus the
coefficients of polynomial r, such that D′(p1, p2) ⊆ D′(p2, r). If d divide the co-
efficients of polynomials p2 and r then d divide p1q1. If d | q1 then q1 and r are
not relative prime. It follows d | p1, such that d divide the coefficients of p1, thus
D′(p1, p2) ⊇ D′(p2, r). �

This theorem permits to give an Euclid’s type algorithm for performing the
greatest common divisor of two polynomials of several variables with coefficients in
factorial ring.

We suppose that deg p1 ≥ deg p2. From the third theorem applied to polynomials
p1 and p2 we obtain that D(p1, p2) = D(p2, r), where r is the remainder of division
for p1, p2. If r = 0 then (p1, p2) = p2. If r 6= 0 then deg r < deg p2.

Apply the third theorem polynomials p2 and r. We can write:

p2q
′
1 = rq′2 + r1 (3.11)

If r1 = 0 then (p1, p2) = (p2, r) = r. If r1 6= 0 then:

deg p1 ≥ deg p2 > deg r > deg r1 > . . . (3.12)

and (p1, p2) = (p2, r) = (r, r1) = . . . such that after a finite number of steps is
obtained a zero remainder. The latest non zero divisor in the row ( 3.12) is the
greatest common divisor of polynomials p1 and p2.

4. Applications

4.1. The greatest common divisor of polynomials p1 = X3+Y 3+Z3−3XY Z,
p2 = X + Y + Z.

We choose the variable Z for division. Polynomials p1 and p2 ordered are of the
form:

p1 = Z3 − 3XY Z + (X3 + Y 3), p2 = Z + (X + Y ) (4.13)

The first relation of division is: p1 = p2

(
Z2 − (X + Y )Z + (X2 + Y 2 −XY )

)
.

Thus the greatest common divisor of p1 and p2 is p2.

4.2. The greatest common divisor of polynomials p1 = 2X2 + (2Z + 1)X+
(−2Y2−2YZ+Y+Z), p2 = 2X2 + (4Y + 2Z + 1)X + (2Y2 + 2YZ + Y + Z). The
first relation of division is: p1 = p2 − 4Y (X + Y + Z) or p1 = p2 + r.

The second relation of division is (−4Y )p2 = r(2X + 2Y + 1). But −4Y | r.
Thus the second relation of division is p2 = r′(2X + 2Y + 1) with r′ = X + Y + Z.
The greatest common divisor is r′.
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4.3. Inversion of matrix of polynomials with several variables.
In this subheading is described an inverse matrix of a matrix of several variable

that intervene in the mechanical modeling of the plane shapes.
The inverse matrix of the matrix [pij ], i, j = 1, . . . , 8, is denoted by [qij | qi], i,

j = 1, . . . , 8, and is deduced by reduce the fractions of polynomials. The expression
of the coefficients is:

p14 = −b, p16 = a, p25 = a, p26 = −b, p37 = 2ab, p48 = −2ab, p51 = 1,

p53 = −b, p54 = −a, p55 = pa, p56 = b(1 + p), p62 = 1, p63 = −a

p64 = −bp, p66 = −a(1 + p), p73 = b, p74 = −a, p75 = ap,

p76 = −b(1 + p), p77 = a2 + b2, p83 = −a, p84 = bp, p85 = −b,

p86 = −a(1 + p), p88 = −(a2 + b2).

In the rest, the values of pij are zero.

q11 = −4a2b2(1 + p)(2a2 + b2 − b2p), q12 = −4a3b3(1 + p)2,

q13 = (a2 + b2)(a4 − 2a2b2 − b4 − 2a2b2p), q14 = 2ab(a2 + b2)(a2 − b2p),

q15 = 2ab(a2 + b2)2, q17 = −2ab(a4 − 2a2b2 − b4 − 2a2b2p),

q18 = −4a2b2(a2 − b2p), q21 = −4a3b3(1 + p)2,

q22 = −4a2b2(1 + p)(2b2 + a2 − a2p), q23 = 2ab(a2 + b2)(−b2 + a2p),

q24 = (a2 + b2)(2b2 + a2−a2p), q26 = 2ab(a2 + b2)2, q27 = −4a2b2(a2p−b2),

q28 = −2ab(a4 + 2a2b2 − b4 + 2a2b2p), q31 = 2a2b(1 + p), q32 = 2ab2(1 + p),

q33 = b(a2 + b2), q34 = −a(a2 + b2), q37 − 2ab2, q38 = 2a2b,

q41 = −2b2(2a2 + b2 + a2p), q42 = −2ab(b2 − a2p), q43 = a2(a2 + b2),

q44 = ab(a2 + b2), q47 = −2a3b, q48 = −2a2b2, q51 = −2ab(a2 − b2p),

q52 = −2a2(a2 + 2b2 + b2p), q53 = −ab(a2 + b2), q54 = −b2(a2 + b2),

q57 = 2a2b2, q58 = 2ab3, q61 = −2a(a2 − b2p), q62 = 2b(b2 − a2p),

q63 = −a(a2 + b2), q64 = −b(a2 + b2), q67 = 2a2b, q68 = 2ab2, q73 = 1, q84 = 1

In the rest the values of qij are zero.

q1 = 2ab(a2 +b2)2, q2 = 2ab(a2 +b2)2, q1 =− 2ab(a2 +b2), q4 = 2b(a2 +b2)2,

q5 =− 2a(a2 +b2)2, q6 =− 2(a2 +b2)2, q7 = 2ab, q8 =− 2ab.

5. A new definition of Euclidean ring

N. Jacobson, in the treatise “Basic Algebra” give the following definition of Eu-
clidean ring:

A domain of integrity D is called Euclidean if there exists a map δ : D → N ,
of D into the set N of non-negative integers, such that if a, b 6= 0 ∈ D, then there
exist q, r ∈ D such that a = bq + r where δ(r) < δ(b).

We propose the following definition of Euclidean ring:
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A factorial ring D is called Euclidean if there exists a map δ : D → N , of D
into the set N of non-negative integers, such that if a, b 6= 0 ∈ D, then there exist
q1, q2, r ∈ D such that aq1 = bq2 + r where δ(r) < δ(b) and q1, q2, r are relatively
prime.
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