CREATIVE MATH.

A Theorem of Division with a Remainder in a Set of Polynomials with Several Variables

Marcel Migdalovici

ABSTRACT. The set of polynomials of several variables with coefficients in factorial ring (such as the integers ring) has not provided a structure of Euclidean ring and implicitly do not permit Euclid algorithm to perform the greatest common divisor of two or more polynomials.

In this work is performed a division theorem with a remainder in the set of polynomials of several variables with coefficients in a factorial ring.

This theorem underline the possibility to do a new definition of Euclidean ring and a new algorithm to perform the greatest common divisor of two or more polynomials of several variables.

The algorithm for performing the greatest common divisor of polynomials with several variables may be used to determine an analytical inverse matrix for a matrix of such polynomials that intervene in a mathematical modeling of mechanical phenomena.

1. Introductional notions

A unitary and commutative ring K without divisors of zero is named an integral domain. We write briefly K i.d.

Let K a factorial ring, therefore an integral domain with the property that every non zero and non invertible element of K is a product of prime elements of K. We write K f.r.

If $a, b \in K$ we say that a divide b if $b=a c$ with $c \in \mathrm{~K}$ and will write $a \mid b$.
A non zero and non invertible element $p \in K$ is named "prime" if for any $a, b \in K$ with $p \mid a b$ it results $p \mid a$ or $p \mid b$.

An element $c \in K$ (if exist) is named a greatest common divisor of a and b if $c|a, c| b$ and if $d|a, d| b$ then $d \mid c$. Is denoted $c=(a, b)$.

If $d_{1}=(a, b), d_{2}=(a, b)$ then exists $u \in K$, invertible such that $d_{1}=u d_{2}$.
Two elements $d_{1}, d_{2} \in K$ such that exists $u \in K$ invertible, with $d_{1}=u d_{2}$ are named adjoints in divisibility.

The elements $a, b \in K$ such that $(a, b)=1$ are named relatively prime.
The ring of polynomials of one variable with coefficients in K is denoted by $K[X]$ and the ring of polynomials of several variable X_{1}, \ldots, X_{n} with coefficients in K is denoted by $K\left[X_{1}, \ldots, X_{n}\right]$.

If K i.d. and $\mathrm{f} \in \mathrm{K}[\mathrm{X}]$ of the form

$$
\begin{equation*}
f=a_{o}+a_{1} X+\ldots+a_{n} X^{n} \tag{1.1}
\end{equation*}
$$

is denoted by $c(f) \in K$ the greatest common divisor (g.c.d.) for the coefficients $a_{i} \in K,(i=1, \ldots, n)$ of polynomial f.

If $f \in K[X]$ is of the form (1.1) and $a \in K$ with $a \mid f$ then $a \mid a_{i}, i=1, \ldots, n$ where $a_{i} \in K$.

[^0]If $g \in K[X]$ and $c(g)=1$ we say that g is primal polynomial.
Is denoted by $K_{0}\left[X_{m}\right]$ the ring of polynomials in indeterminate X_{m} over ring $K_{0}=K\left[X_{1}, \ldots, X_{m-1}, X_{m+1}, \ldots, X_{n}\right]$ where $m \leq n$. A polynomial $g \in K_{0}\left[X_{m}\right]$ is of the form

$$
\begin{equation*}
g=b_{0}+b_{1} X_{m}+\cdots+b_{n} X_{m}^{n} \tag{1.2}
\end{equation*}
$$

where $b_{0}, b_{1}, \ldots, b_{n} \in K_{0}$ are polynomials from the ring $K\left[X_{1}, \ldots, X_{m-1}, X_{m+1}, \ldots, X_{n}\right]$.

If K is i.d. then $K[X]$ is i.d. and if K is f.r. then $K[X]$ is f.r.
If K is f.r., $f, g, h \in K[X]$ and f, g are relatively prime such that $f \mid g h$ then $f \mid h$.

We will use the following property [1]:
Theorem 1. Let f and $g \neq 0$ be polynomials in $R[X], R$ a ring, and let p be degree and b_{p} the leading coefficient of g. Then there exists $a k \in N$ and polynomials q and $r \in R[X]$ with deg $r<\operatorname{deg} g$ such that

$$
\begin{equation*}
b_{p}^{k} f=q g+r \tag{1.3}
\end{equation*}
$$

where $k=\max (0, \operatorname{deg} f-\operatorname{deg} g+1)$.

2. A division with a remainder theorem for $K\left[X_{1}, \ldots, X_{n}\right]$

Let K factorial ring and $0<m \leq n$, with $m, n \in \mathbb{N}$.
We formulate bellow the following:
Theorem 2. If a polynomials $p_{1}, p_{2} \in K\left[X_{1}, \ldots, X_{n}\right], p_{1} \neq 0, p_{2} \neq 0$, for fixed m exists a polynomials $q_{1}, q_{2}, r \in K\left[X_{1}, \ldots, X_{n}\right]$, uniques without a adjointly in divisibility, such that

$$
\begin{equation*}
p_{1} q_{1}=p_{2} q_{2}+r \tag{2.4}
\end{equation*}
$$

where $r=0$ or $\operatorname{deg} r<\operatorname{deg} p_{2}$, with degree refereed to variable m.
The polynomials q_{1}, q_{2}, r are relatively prime and $q_{1} \neq 0$.
Proof. In the following all polynomials are considered as polynomials in the variable X_{m}. If $\operatorname{deg} p_{1}<\operatorname{deg} p_{2}$ the relation (2.4) is determined by considering $q_{1}=1, q_{2}=0$, $r=p_{1}$.

For $\operatorname{deg} p_{1} \geq \operatorname{deg} p_{2}$ we use the relation (1.3) of the theorem 1 , where $R[X]$ is $K_{0}\left(X_{m}\right)$ is the ring of polynomials with variable X_{m} with coefficients from K_{0} in the variables $X_{i}, i=1, \ldots, n, i \neq m$,

$$
\begin{equation*}
b_{p}^{k} p_{1}=q p_{2}+r^{*} \tag{2.5}
\end{equation*}
$$

where b_{p} is the leading coefficient of p_{2} refereed to variable X_{m}, that is b_{p} is polynomial from the ring $K\left[X_{1}, \ldots, X_{m-1}, X_{m+1}, \ldots, X_{n}\right]$, and where $k=\max \left(0, \operatorname{deg} p_{1}-\right.$ $\operatorname{deg} p_{2}+1$).

Let d be the greatest common divisor of polynomials b_{p}^{k} and q as the polynomials of ring $\mathrm{K}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}\right]$. Because b_{p}^{k} is a polynomial no more than $n-1$ variables then d is a polynomial no more than $n-1$ variables. Polynomial d is also divisor of polynomial r^{*} because

$$
\begin{equation*}
b_{p}^{k} p_{1}-q p_{2}=r^{*} \tag{2.6}
\end{equation*}
$$

We simplify the relation (2.5) with polynomial d and it follows:

$$
\begin{equation*}
q_{1} p_{1}=q_{2} p_{2}+r \tag{2.7}
\end{equation*}
$$

where are denoted by q_{1}, q_{2} and r the polynomials $b_{p}^{k} q$, respectively r^{*} divided by d.

The polynomials q_{1}, q_{2}, r are relatively prime from your deduction and $q_{1} \neq 0$ because $p_{2} \neq 0$.

We study the uniqueness of the relationship (2.4). Suppose the existence of the second division relationship of the polynomials p_{1} and p_{2} such that

$$
\begin{equation*}
p_{1} q_{1}^{\prime}=p_{2} q_{2}^{\prime}+r^{\prime} \tag{2.8}
\end{equation*}
$$

where the polynomials $q_{1}^{\prime}, q_{2}^{\prime}, r^{\prime}$ are relatively prime and $q_{1}^{\prime} \neq 0$.
From (2.4) and (2.8) it follows that

$$
\begin{equation*}
p_{2}\left(q_{1}^{\prime} q_{2}-q_{1} q_{2}^{\prime}\right)=r^{\prime} q_{1}-r q_{1}^{\prime} \tag{2.9}
\end{equation*}
$$

If $q_{1}^{\prime} q_{2}-q_{1} q_{2}^{\prime} \neq 0$ then $\operatorname{deg}\left(r^{\prime} q_{1}-r q_{1}^{\prime}\right) \geq \operatorname{deg} p_{2}$ as polynomials in X_{m}.
But $\operatorname{deg} r<\operatorname{deg} p_{2}$ and $\operatorname{deg} r^{\prime}<\operatorname{deg} p_{2}$ then $\operatorname{deg}\left(r^{\prime} q_{1}-r q_{1}^{\prime}\right)<\operatorname{deg} p_{2}$.
Contradiction. It follows $q_{1}^{\prime} q_{2}-q_{1} q_{2}^{\prime}=0$ and $r^{\prime} q_{1}-r q_{1}^{\prime}=0$.
Because $q_{1} \mid q_{1}^{\prime} q_{2}$ and q_{1}, q_{2} are relatively prime it follows that $q_{1} \mid q_{1}^{\prime}$. Analogue, from $r^{\prime} q_{1}=r q_{1}^{\prime}$ and $q_{1}^{\prime} \mid r^{\prime} q_{1}$ with $q_{1}^{\prime}, r^{\prime}$ relatively prime, we deduce that $q_{1}^{\prime} \mid q_{1}$ such that q_{1} and q_{1}^{\prime} are adjointly in divisibility.

From $r^{\prime} q_{1}=r q_{1}^{\prime}$ and q_{1}, q_{1}^{\prime} adjointly in divisibility, it follows that r, r^{\prime} are adjointly in divisibility.
3. The Euclid's type algorithm in the factorial Ring $K\left[X_{1}, \ldots X_{n}\right]$

We suppose that K is factorial ring and $0<m \leq n$, with $m, n \in N$.
Let $p_{1}, p_{2} \in K\left[X_{1}, \ldots, X_{n}\right], p_{1} \neq 0, p_{2} \neq 0$. From the second theorem, for fixed m exists a polynomials $q_{1}, q_{2}, r \in K\left[X_{1}, \ldots, X_{n}\right]$, uniques without a adjointly in divisibility, such that

$$
\begin{equation*}
p_{1} q_{1}=p_{2} q_{2}+r \tag{3.10}
\end{equation*}
$$

where $r=0$ or $\operatorname{deg} r<\operatorname{deg} p_{2}$, with degree refereed to variable m.
The polynomials q_{1}, q_{2}, r are relatively prime and $q_{1} \neq 0$.
There is the following property:
Theorem 3. In the conditions of second theorem, is true the equality $D\left(p_{1}, p_{2}\right)=D\left(p_{2}, r\right)$, where r is the remainder of the division of the polynomials p_{1} and p_{2}, and where $D(f, g)$ is the set of polynomials greatest common divisors of f and g.

Proof. We suppose, for beginning, that p_{1} and p_{2} are primal polynomials. It is sufficiently to provide the property for the set of prime divisors.

Let $d \in D\left(p_{1}, p_{2}\right), d$ prime polynomial and $d\left|p_{1}, d\right| p_{2}$. But $r=p_{1} q_{1}-p_{2} q_{2}$. Then $d \mid r$ and thus $d \in D\left(p_{2}, r\right)$, such that $D\left(p_{1}, p_{2}\right) \subseteq D\left(p_{2}, r\right)$.

Conversely, let d be prime polynomial, $d \in D\left(p_{2}, r\right)$. Then d_{2} and $d \mid r$. Thus $d \mid p_{1} q_{1}$ because $p_{1} q_{1}=p_{2} q_{2}+r$. But d is prime polynomial, therefore $d \mid p_{1}$ or
$d \mid q_{1}$. Because $d \mid p_{2}$ and p_{2} primal polynomial it follows d is primal polynomial. If $d \mid q_{1}$ than d is polynomial independent of X_{m} and because $d \mid p_{2}$ it follows d
divide the coefficients of p_{2}. Contradiction, because p_{2} is primal polynomial. Then $d \mid p_{1}$, such that $d \in D\left(p_{1}, p_{2}\right)$. Thus $D\left(p_{1}, p_{2}\right) \supseteq D\left(p_{2}, r\right)$.

We denote by $D^{\prime}\left(p_{1}, p_{2}\right)$ the set of polynomials common divisors of coefficients for p_{1} and p_{2}.

If p_{1}, p_{2} are not primal polynomials and d, prime polynomial, divide the coefficients of polynomials p_{1} and p_{2} then d divide the polynomial r and thus the coefficients of polynomial r, such that $D^{\prime}\left(p_{1}, p_{2}\right) \subseteq D^{\prime}\left(p_{2}, r\right)$. If d divide the coefficients of polynomials p_{2} and r then d divide $p_{1} q_{1}$. If $d \mid q_{1}$ then q_{1} and r are not relative prime. It follows $d \mid p_{1}$, such that d divide the coefficients of p_{1}, thus $D^{\prime}\left(p_{1}, p_{2}\right) \supseteq D^{\prime}\left(p_{2}, r\right)$.

This theorem permits to give an Euclid's type algorithm for performing the greatest common divisor of two polynomials of several variables with coefficients in factorial ring.

We suppose that $\operatorname{deg} p_{1} \geq \operatorname{deg} p_{2}$. From the third theorem applied to polynomials p_{1} and p_{2} we obtain that $D\left(p_{1}, p_{2}\right)=D\left(p_{2}, r\right)$, where r is the remainder of division for p_{1}, p_{2}. If $r=0$ then $\left(p_{1}, p_{2}\right)=p_{2}$. If $r \neq 0$ then $\operatorname{deg} r<\operatorname{deg} p_{2}$.

Apply the third theorem polynomials p_{2} and r. We can write:

$$
\begin{gather*}
p_{2} q_{1}^{\prime}=r q_{2}^{\prime}+r_{1} \tag{3.11}\\
\text { If } r_{1}=0 \text { then }\left(p_{1}, p_{2}\right)=\left(p_{2}, r\right)=r \text {. If } r_{1} \neq 0 \text { then: } \\
\operatorname{deg} p_{1} \geq \operatorname{deg} p_{2}>\operatorname{deg} r>\operatorname{deg} r_{1}>\ldots \tag{3.12}
\end{gather*}
$$

and $\left(p_{1}, p_{2}\right)=\left(p_{2}, r\right)=\left(r, r_{1}\right)=\ldots$ such that after a finite number of steps is obtained a zero remainder. The latest non zero divisor in the row (3.12) is the greatest common divisor of polynomials p_{1} and p_{2}.

4. Applications

4.1. The greatest common divisor of polynomials $p_{1}=X^{3}+Y^{3}+Z^{3}-3 X Y Z$, $p_{2}=X+Y+Z$.

We choose the variable Z for division. Polynomials p_{1} and p_{2} ordered are of the form:

$$
\begin{equation*}
p_{1}=Z^{3}-3 X Y Z+\left(X^{3}+Y^{3}\right), \quad p_{2}=Z+(X+Y) \tag{4.13}
\end{equation*}
$$

The first relation of division is: $p_{1}=p_{2}\left(Z^{2}-(X+Y) Z+\left(X^{2}+Y^{2}-X Y\right)\right)$.
Thus the greatest common divisor of p_{1} and p_{2} is p_{2}.
4.2. The greatest common divisor of polynomials $\mathbf{p}_{\mathbf{1}}=\mathbf{2} \mathbf{X}^{\mathbf{2}}+(\mathbf{2 Z}+\mathbf{1}) \mathbf{X}+$ $\left(-2 \mathbf{Y}^{2}-2 \mathbf{Y Z}+\mathbf{Y}+\mathbf{Z}\right), \mathrm{p}_{2}=2 \mathrm{X}^{2}+(4 \mathbf{Y}+\mathbf{2 Z}+1) \mathrm{X}+\left(2 \mathbf{Y}^{2}+\mathbf{Y Z}+\mathbf{Y}+\mathbf{Z}\right)$. The first relation of division is: $p_{1}=p_{2}-4 Y(X+Y+Z)$ or $p_{1}=p_{2}+r$.

The second relation of division is $(-4 Y) p_{2}=r(2 X+2 Y+1)$. But $-4 Y \mid r$. Thus the second relation of division is $p_{2}=r^{\prime}(2 X+2 Y+1)$ with $r^{\prime}=X+Y+Z$. The greatest common divisor is r^{\prime}.

4.3. Inversion of matrix of polynomials with several variables.

In this subheading is described an inverse matrix of a matrix of several variable that intervene in the mechanical modeling of the plane shapes.

The inverse matrix of the matrix $\left[p_{i j}\right], i, j=1, \ldots, 8$, is denoted by $\left[q_{i j} \mid q_{i}\right], i$, $j=1, \ldots, 8$, and is deduced by reduce the fractions of polynomials. The expression of the coefficients is:

$$
\begin{aligned}
& p_{14}=-b, p_{16}=a, p_{25}=a, p_{26}=-b, p_{37}=2 a b, p_{48}=-2 a b, p_{51}=1, \\
& p_{53}=-b, p_{54}=-a, p_{55}=p a, p_{56}=b(1+p), p_{62}=1, p_{63}=-a \\
& p_{64}=-b p, p_{66}=-a(1+p), p_{73}=b, p_{74}=-a, p_{75}=a p \\
& p_{76}=-b(1+p), p_{77}=a^{2}+b^{2}, p_{83}=-a, p_{84}=b p, p_{85}=-b, \\
& p_{86}=-a(1+p), p_{88}=-\left(a^{2}+b^{2}\right)
\end{aligned}
$$

In the rest, the values of $p_{i j}$ are zero.

$$
\begin{aligned}
& q_{11}=-4 a^{2} b^{2}(1+p)\left(2 a^{2}+b^{2}-b^{2} p\right), q_{12}=-4 a^{3} b^{3}(1+p)^{2}, \\
& q_{13}=\left(a^{2}+b^{2}\right)\left(a^{4}-2 a^{2} b^{2}-b^{4}-2 a^{2} b^{2} p\right), q_{14}=2 a b\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2} p\right), \\
& q_{15}=2 a b\left(a^{2}+b^{2}\right)^{2}, q_{17}=-2 a b\left(a^{4}-2 a^{2} b^{2}-b^{4}-2 a^{2} b^{2} p\right), \\
& q_{18}=-4 a^{2} b^{2}\left(a^{2}-b^{2} p\right), q_{21}=-4 a^{3} b^{3}(1+p)^{2}, \\
& q_{22}=-4 a^{2} b^{2}(1+p)\left(2 b^{2}+a^{2}-a^{2} p\right), q_{23}=2 a b\left(a^{2}+b^{2}\right)\left(-b^{2}+a^{2} p\right), \\
& q_{24}=\left(a^{2}+b^{2}\right)\left(2 b^{2}+a^{2}-a^{2} p\right), q_{26}=2 a b\left(a^{2}+b^{2}\right)^{2}, q_{27}=-4 a^{2} b^{2}\left(a^{2} p-b^{2}\right), \\
& q_{28}=-2 a b\left(a^{4}+2 a^{2} b^{2}-b^{4}+2 a^{2} b^{2} p\right), q_{31}=2 a^{2} b(1+p), q_{32}=2 a b^{2}(1+p), \\
& q_{33}=b\left(a^{2}+b^{2}\right), q_{34}=-a\left(a^{2}+b^{2}\right), q_{37}-2 a b^{2}, q_{38}=2 a^{2} b, \\
& q_{41}=-2 b^{2}\left(2 a^{2}+b^{2}+a^{2} p\right), q_{42}=-2 a b\left(b^{2}-a^{2} p\right), q_{43}=a^{2}\left(a^{2}+b^{2}\right), \\
& q_{44}=a b\left(a^{2}+b^{2}\right), q_{47}=-2 a^{3} b, q_{48}=-2 a^{2} b^{2}, q_{51}=-2 a b\left(a^{2}-b^{2} p\right), \\
& q_{52}=-2 a^{2}\left(a^{2}+2 b^{2}+b^{2} p\right), q_{53}=-a b\left(a^{2}+b^{2}\right), q_{54}=-b^{2}\left(a^{2}+b^{2}\right), \\
& q_{57}=2 a^{2} b^{2}, q_{58}=2 a b^{3}, q_{61}=-2 a\left(a^{2}-b^{2} p\right), q_{62}=2 b\left(b^{2}-a^{2} p\right), \\
& q_{63}=-a\left(a^{2}+b^{2}\right), q_{64}=-b\left(a^{2}+b^{2}\right), q_{67}=2 a^{2} b, q_{68}=2 a b^{2}, q_{73}=1, q_{84}=1
\end{aligned}
$$

In the rest the values of $\mathrm{q}_{i j}$ are zero.

$$
\begin{aligned}
& q_{1}=2 a b\left(a^{2}+b^{2}\right)^{2}, q_{2}=2 a b\left(a^{2}+b^{2}\right)^{2}, q_{1}=-2 a b\left(a^{2}+b^{2}\right), q_{4}=2 b\left(a^{2}+b^{2}\right)^{2}, \\
& q_{5}=-2 a\left(a^{2}+b^{2}\right)^{2}, q_{6}=-2\left(a^{2}+b^{2}\right)^{2}, q_{7}=2 a b, q_{8}=-2 a b .
\end{aligned}
$$

5. A new definition of Euclidean ring

N. Jacobson, in the treatise "Basic Algebra" give the following definition of Euclidean ring:

A domain of integrity D is called Euclidean if there exists a map $\delta: D \rightarrow N$, of D into the set N of non-negative integers, such that if $a, b \neq 0 \in D$, then there exist $q, r \in D$ such that $a=b q+r$ where $\delta(r)<\delta(b)$.

We propose the following definition of Euclidean ring:

A factorial ring D is called Euclidean if there exists a map $\delta: D \rightarrow N$, of D into the set N of non-negative integers, such that if $a, b \neq 0 \in D$, then there exist $q_{1}, q_{2}, r \in D$ such that $a q_{1}=b q_{2}+r$ where $\delta(r)<\delta(b)$ and q_{1}, q_{2}, r are relatively prime.

6. Acknowledgements

Thanks to the CNCSIS-Bucharest for its financial support through the Grant nr. 33344 | 2004, theme A3.

References

[1] Ion, D. Ion, Niţă, C., Năstăsescu, C., Complemente de algebră, Editura Ştiinţifică şi Enciclopedică, 1984
[2] Jacobson, N., Basic Algebra, vol.I, Editura FREEMAN, San Francisco, 1973
[3] Migdalovici, M., Automatizarea calculului structurilor mecanice cu aplicaţii la C.N.E., Teză de doctorat, 1985
[4] Năstăsescu, C., Niţă, C., Vraciu, C., Bazele Algebrei, vol. I, Editura Academiei, Bucureşti, 1986

Institute of Solid Mechanics Bucharest
Romania
E-mail address: migdal@imsar.bu.edu.ro

[^0]: Received: 13.09.2004. In revised form: 29.11.2004
 2000 Mathematics Subject Classification. 11C08, 13B25, 13P05.
 Key words and phrases. Polynomials, division with a remainder, Euclidean ring.

