CREATIVE	MATH.
$\mathbf{1 3}(2004)$,	$11-16$

On some positive matrices

Vasile Pop

ABSTRACT. In this paper one gives elementary methods for solving some difficult problems related to any incidence matrix.

1. Introduction

This paper does not contain essential new theoretical results. Its aim is to suggest a method for solving some elementary problems, which are very difficult and are related to positive defined matrices. The best-known example of incidence matrices is the following: if $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets, then the matrix $A=\left[a_{i j}\right]_{i, j=\overline{1, n}}$ (where $a_{i j}=\left|A_{i} \cap A_{j}\right|$ is the number of elements of the set $A_{i} \cap A_{j}$), is called the incident matrix of these sets.

One of the problems that require an ingenious solving, is to prove that the determinant of this matrix is positive. Starting from this problem, we are going to give a more general result.

Problem 1. Prove that, if $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets and $a_{i j}=\left|A_{i} \cap A_{j}\right|$, then $\operatorname{det}\left[a_{i j}\right]_{i, j=\overline{1, n}} \geq 0$.

2. Main Results

We begin with the solution of Problem 1, whose idea will be used to extend the method for another problems.

Proof. Consider $M=\bigcup_{i=1}^{n} A_{i}=\left\{a_{1}, a_{2}, \ldots, a_{N}\right\}$.
To each set A_{i} we assign a vector $V_{i} \in\{0,1\}^{N}, V_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i N}\right)$ where

$$
v_{i k}=\left\{\begin{array}{lll}
1 & \text { if } & a_{k} \in A_{i} \\
0 & \text { if } & a_{k} \notin A_{i}
\end{array}\right.
$$

We have:

$$
\left|A_{i} \cap A_{j}\right|=\sum_{k=1}^{N} v_{i j} v_{j k}, \quad i, j=\overline{1, n}
$$

So, considering the matrix $B \in \mathcal{M}_{m, N}(\{0,1\}), B=\left[v_{i k}\right]_{\substack{i=\overline{1, n} \\ k=1, N}}$, we obtain that $A=B \cdot B^{T}$ (where B^{T} is the transpose of the matrix B).

[^0]Lemma 1. If $B \in \mathcal{M}_{n, N}(\mathbb{R})$ and $A=B \cdot B^{T} \in \mathcal{M}_{n}(\mathbb{R})$, then

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \geq 0
$$

for every $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$.
Proof.

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{N} v_{i k} v_{k j} x_{i} x_{j}= \\
=\sum_{k=1}^{N}\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i} v_{i k}\right)\left(x_{j} v_{j k}\right)\right)=\sum_{k=1}^{N}\left(\sum_{i=1}^{N} x_{i} v_{i k}\right)^{2} \geq 0 .
\end{gathered}
$$

Lemma 2. If $A \in \mathcal{M}_{n}(\mathbb{R})$ and $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \geq 0$ for every $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$, then $\operatorname{det} A \geq 0$.

Proof. We prove that $\operatorname{det}\left(A+x I_{n}\right) \geq 0$ for every $x \geq 0$.
In order to do this, it is enough to prove that the real polynomial $P(X)=$ $\operatorname{det}\left(A+x I_{n}\right)$ has no positive roots.

If there exists $x_{0} \in \mathbb{R}$ such that $\operatorname{det}\left(A+x_{0} I_{n}\right)=0$, then the system $\left(A+x_{0} I_{n}\right) X=$ 0 has a nontrivial solution $X_{0}=\left[x_{1}, \ldots, x_{n}\right]^{T}$ where $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$. Then from $A X_{0}=-x_{0} X_{0}$ it follows that $X_{0}^{T} A X_{0}=-x_{0} X_{0}^{T} X_{0}$, which is equivalent to

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=-x_{0} \sum_{i=1}^{n} x_{i}^{2}
$$

Hence, $x_{0} \leq 0$.
So the polynomial P is positive on the interval $[0, \infty)$, whence $P(0)=\operatorname{det} A \geq 0$.
We conclude that Lemma 1 and Lemma 2 imply $\operatorname{det} A=\operatorname{det}\left(B \cdot B^{T}\right) \geq 0$ and this finishes the proof.

Remark 1. Considering the Euclidean scalar product on \mathbb{R}^{N}

$$
\left\langle V_{i}, V_{j}\right\rangle=\sum_{k=1}^{N} v_{i k} v_{j k}
$$

with we obtain that $a_{i j}$ defined in (1) has the entries $a_{i j}=\left\langle V_{i}, V_{j}\right\rangle$, so the matrix A is the Gram matrix of the vectors $V_{1}, V_{2}, \ldots, V_{n}$, which will be denoted by $A=G\left[V_{1}, V_{2}, \ldots, V_{n}\right]$.

It is known that every Gram matrix is positive. More precisely for every Gram matrix $G=\left[\left\langle V_{i}, V_{j}\right\rangle\right]_{i, j=\overline{1, n}}$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n}\left\langle V_{i}, V_{j}\right\rangle x_{i} x_{j}=\sum_{i=1}^{n}\left\langle x_{i} V_{i}, x_{j} V_{j}\right\rangle= \\
= & \left\langle\sum_{i=1}^{n} x_{i} V_{i}, \sum_{j=1}^{n} x_{j} V_{j}\right\rangle=\left\|\sum_{i=1}^{n} x_{i} V_{i}\right\|^{2} \geq 0,
\end{aligned}
$$

hence, using Lemma $2, \operatorname{det}(G) \geq 0$.

Remark 2. If we consider the characteristic functions of the sets A_{i},

$$
\varphi_{A_{i}}: \bigcup_{i=1}^{n} A_{i} \rightarrow\{0,1\}, \quad \varphi_{A_{i}}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in A_{i} \\
0 & \text { if } & x \notin A_{i}
\end{array}\right.
$$

and on the set of functions $\left\{\varphi:\left\{a_{1}, a_{2}, \ldots, a_{N}\right\} \rightarrow\{0,1\}\right\}$ we define the scalar product

$$
\left\langle\varphi_{1}, \varphi_{2}\right\rangle=\sum_{k=1}^{N} \varphi_{1}\left(a_{k}\right) \varphi_{2}\left(a_{k}\right)
$$

then

$$
a_{i j}=\left|A_{i} \cap A_{j}\right|=\left\langle\varphi_{A_{i}}, \varphi_{A_{j}}\right\rangle
$$

Hence the matrix A can also be written as a Gram matrix of characteristic functions:

$$
A=G\left[\varphi_{A_{1}}, \varphi_{A_{2}}, \ldots, \varphi_{A_{n}}\right]
$$

Further, we extend these results. First we recall some definitions.
Definition 1. A family of sets K is called a clan of sets if for every A, B in K we have $A \cup B \in K$ and $A-B \in K$.

Remark 3. If K is a clan of sets, then $\emptyset \in K$ and $A \cap B \in K$ for every A and B in K.

Definition 2. If K is a clan of sets, then a function $m: K \rightarrow[0, \infty]$ is called a measure on K if $m(A \cup B)=m(A)+m(B)$, for every disjoint sets $A, B \in K$.

Remark 4. If K is a clan endowed with a measure m, denoted (K, m) then:
a) $m(\emptyset)=0$
b) If $A \subset B$ then $m(B-A)=m(B)-m(A)$
c) If $m(A \cup B) \in[0, \infty)$, then $m(A \cup B)=m(A)+m(B)-m(A \cap B)$.

Definition 3. If (K, m) is a clan endowed with a measure and $A_{1}, A_{2}, \ldots, A_{n}$ are sets from K, then the matrix $A=\left[a_{i j}\right]_{i, j=\overline{1, n}}$, where $a_{i j}=m\left(A_{i} \cap A_{j}\right)$ is called the incident matrix of the sets $A_{1}, A_{2}, \ldots, A_{n}$.

A generalization of the Problem 1 is:
Problem 2. Prove that if $A=\left[m\left(A_{i} \cap A_{j}\right)\right]_{i, j=\overline{1, n}}$ is the incident matrix of the sets $A_{1}, A_{2}, \ldots, A_{n}$, then the determinant of the matrix is positive.

Proof. We prove that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \geq 0
$$

for every real numbers $x_{1}, x_{2}, \ldots, x_{n}$ and from Lemma 2 it follows that $\operatorname{det} A \geq 0$. Denoting $I=\{1,2, \ldots, n\}$, for every nonempty subset J of I we define the sets

$$
B_{J}=\bigcap_{j \in J} A_{j}-\bigcup_{j \notin J} A_{i} .
$$

The $2^{n}-1$ sets B_{J}, with $J \subset I$,form a partition of the set $B=\bigcup_{i=1}^{n} A_{i}$ and we have

$$
A_{i}=\bigcup_{J}\left\{B_{J} \mid i \in J\right\} \text { and } A_{i} \cap A_{j}=\bigcup_{J}\left\{B_{J} \mid\{i, j\} \subset J\right\} .
$$

Denoting $m\left(B_{J}\right)=m_{J}$, from the properties of the measure and from the above relations we obtain:

$$
m\left(A_{i}\right)=\sum_{i \in J} m_{J}=a_{i i} \text { and } m\left(A_{i} \cap A_{j}\right)=\sum_{\{i, j\} \subset J} m_{J}=a_{i j}
$$

Then

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\sum_{\{i, j\} \subset J} m_{J}\right) x_{i} x_{j}= \\
= & \sum_{J} m_{J}\left(\sum_{i \in J} \sum_{j \in J} x_{i} x_{j}\right)=\sum_{J} m_{j}\left(\sum_{j \in J} x_{i}\right)^{2} \geq 0,
\end{aligned}
$$

From Lemma 1 and Lemma 2 we conclude that $\operatorname{det} A \geq 0$.
Remark 5. If we denote the $2^{n}-1=N$ nonempty subsets of I by $J_{1}, J_{2}, \ldots, J_{N}$ and if we assign to every set A_{i} a vector $V_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i N}\right) \in \mathbb{R}^{n}$, where

$$
v_{i k}= \begin{cases}\sqrt{m_{J_{k}}} & \text { if } i \in J_{k} \\ 0 & \text { otherwise }\end{cases}
$$

then

$$
\left\langle V_{i}, V_{j}\right\rangle=\sum_{k=1}^{N} v_{i k} v_{j k}=\sum_{\{i, j\} \in J_{k}} m_{J_{k}}=a_{i j}
$$

So the matrix A is a Gram matrix:

$$
A=G\left[V_{1}, V_{2}, \ldots, V_{n}\right]
$$

or $A=B \cdot B^{T}$, where $B \in \mathcal{M}_{n, N}(\mathbb{R})$ is the matrix which has the rows $L_{i}=$ $\left[v_{i 1}, v_{i 2}, \ldots, v_{i N}\right], i=\overline{1, n}$.

In many particular cases, Problem 2 admits different solutions.
Problem 3. We consider $D_{1}, D_{2}, \ldots, D_{n}$ a set of discs on the plane (Jordan measurable sets) and we denote the area of the set $D_{i} \cap D_{j}$ by $S\left(D_{i} \cap D_{j}\right)$. Prove that for every real numbers $x_{1}, x_{2}, \ldots, x_{n}$ the following relation holds:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} S\left(D_{i} \cap D_{j}\right) x_{i} x_{j} \geq 0
$$

Proof. If we consider the clan of the Jordan measurable sets from the plane and take as measure of such a set its area, then Problem 3 is a particular case of Problem 2. In what follows, we give another solution of this problem, independent of the previous mentioned one.

Considering $\varphi_{D_{i}}: \mathbb{R}^{2} \rightarrow\{0,1\}$ the characteristic function of the set $D_{i} \subseteq \mathbb{R}^{2}$,

$$
\varphi_{D_{i}}(x, y)= \begin{cases}1 & \text { if }(x, y) \in D_{i} \\ 0 & \text { otherwise }\end{cases}
$$

we have

$$
\begin{gathered}
\varphi_{D_{i} \cap D_{j}}=\varphi_{D_{i}} \cdot \varphi_{D_{j}} \\
S\left(D_{i}\right)=\iint_{\mathbb{R}^{2}} \varphi_{D_{i}}(x, y) d x d y=\iint_{\mathbb{R}^{2}}\left(\varphi_{D_{i}}(x, y)\right)^{2} d x d y
\end{gathered}
$$

and

$$
S\left(D_{i} \cap D_{j}\right)=\iint_{\mathbb{R}^{2}} \varphi_{D_{i} \cap D_{j}}(x, y) d x d y=\iint_{\mathbb{R}^{2}} \varphi_{D_{i}}(x, y) \cdot \varphi_{D_{j}}(x, y) d x d y
$$

Then

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{n} S\left(D_{i} \cap D_{j}\right) x_{i} x_{j}=\iint_{\mathbb{R}^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \cdot \varphi_{D_{i}}(x, y) \cdot x_{j} \cdot \varphi_{D_{j}}(x, y) d x d y= \\
=\iint_{\mathbb{R}^{2}}\left(x_{1} \cdot \varphi_{D_{1}}(x, y)+\cdots+x_{n} \cdot \varphi_{D_{n}}(x, y)\right)^{2} d x d y \geq 0
\end{gathered}
$$

Remark 6. The matrix $A=\left[a_{i j}\right]_{i, j=\overline{1, n}}$, where $a_{i j}=S\left(D_{i} \cap D_{j}\right)$ is the Gram matrix of the functions $\varphi_{D_{1}}, \ldots, \varphi_{D_{n}} \in L^{2}\left(\mathbb{R}^{2}\right)$.

In what follows we give two problems related to the number theory.
Problem 4. Let us consider $n \in \mathbb{N}^{*}, a_{i} \in \mathbb{N}^{*}, b_{i} \in \mathbb{Z}, i=1, \ldots, n$ be given. We denote by $d_{i j}=\left(a_{i}, a_{j}\right)$ the greatest common divisor of a_{i} and a_{j} and define $p_{i j}=b_{i} \cdot b_{j}$. Prove that

$$
\prod_{i=1}^{n} \prod_{j=1}^{n} d_{i j}^{p_{i j}} \geq 1
$$

Proof. Taking the logarithm we obtain

$$
\prod_{i, j=1}^{n} d_{i j}^{p_{i j}} \geq 1 \Leftrightarrow \sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log d_{i j} \geq 0
$$

Let $M=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ be the least common multiple of the numbers $a_{1}, a_{2}, \ldots, a_{n}$ and $M=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{k}^{m_{k}}$ its decomposition in prime factors.

To each number $a_{i}=p_{1}^{\alpha_{i 1}} p_{2}^{\alpha_{i 2}} \ldots p_{k}^{\alpha_{i k}}$ we assign a vector $V_{i} \in \mathbb{R}^{m}$, where $m=$ $m_{1}+m_{2}+\cdots+m_{k}$, in the following way.

$$
\begin{gathered}
V_{i}=[\underbrace{\sqrt{\log p_{1}}, \ldots, \sqrt{\log p_{1}}}_{\alpha_{i 1}}, \underbrace{0, \ldots, 0}_{m_{1}-\alpha_{i 1}}, \ldots, \underbrace{\sqrt{\log p_{k}}, \ldots, \sqrt{\log p_{k}}, \underbrace{0, \ldots, 0}_{m_{k}-\alpha_{i k}}]=}_{\alpha_{i k}} \\
=\left[v_{i 1}, \ldots, v_{i m}\right]
\end{gathered}
$$

Therefore we have

$$
\log d_{i j}=\sum_{q=1}^{m} v_{i q} \cdot v_{j q},
$$

so

$$
\begin{gathered}
\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log d_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} \cdot b_{j} \sum_{q=1}^{m} v_{i q} \cdot v_{j q}= \\
=\sum_{q=1}^{m}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} \cdot v_{i q} \cdot b_{j} \cdot v_{j q}\right)=\sum_{q=1}^{m}\left(\left(\sum_{i=1}^{n} b_{i} \cdot v_{i q}\right)\left(\sum_{j=1}^{n} b_{j} \cdot v_{j q}\right)\right)= \\
=\sum_{q=1}^{m}\left(\sum_{i=1}^{n} b_{i} \cdot v_{i q}\right)^{2} \geq 0 .
\end{gathered}
$$

Problem 5. We consider $n \in \mathbb{N}^{*}, a_{i} \in \mathbb{N}^{*}, b_{i} \in \mathbb{Z}, i=1, \ldots, n$, and $\left(a_{i}, a_{j}\right)$ the greatest common divisor of the numbers a_{i} and a_{j}. Prove that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i}, a_{j}\right) b_{i} \cdot b_{j} \geq 0
$$

Proof. If p and q are natural numbers, then the set $U_{p}=\left\{z \in \mathbb{C} \mid z^{p}=1\right\}$ has p elements, the set $\left\{U_{q}=\left\{z \in \mathbb{C} \mid z^{q}=1\right\}\right.$ has q elements and the set $U_{p} \cap U_{q}=\{z \in$ $\left.\mathbb{C} \mid z^{p}=z^{q}=1\right\}$ has $d=(p, q)$ elements $\left(z^{p}=z^{q}=1 \Longleftrightarrow z^{d}=1\right)$.

Then $\left(a_{i}, a_{j}\right)=\left|U_{a_{i}} \cap U_{a_{j}}\right|$ is the number of elements of the set $U_{a_{i}} \cap U_{a_{j}}$ and thus this Problem reduces to Problem 1 (to Lemma 1 and Lemma 2).

Problem 6. We consider $A=\left[a_{i j}\right]_{i, j=\overline{1, n}}$, where $a_{i j}=\frac{n}{[i, j]}$, with $[i, j]$ the least common divisor of i and j. Prove that $\operatorname{det} A=1$.

Proof. The integer part of the number n / m is equal to the number of all multiples of m which are less than or equal to n. If M_{m} is the set of those multiples of m which are less than or equal to n, then $a_{i j}=\left|M_{i} \cap M_{j}\right|$. Thus, by Problem 1, the matrix A is a Gram matrix. Defining the matrix B as

$$
B=\left[\begin{array}{ccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & \ldots & \ldots & \ldots & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & \ldots & \ldots & \ldots & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 1 & \ldots & \ldots & \ldots & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \ldots & \ldots & \ldots \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & \ldots & \ldots & 0 & 1
\end{array}\right]
$$

then $A=B \cdot B^{T}$ and $\operatorname{det} A=(\operatorname{det} B)^{2}=1$.

References

[1] R.A.Horn, C.R.Johnson, Matrix Analysis, Cambridge University Press, 1985
[2] C.R.Johnson, Positive Definite Matrices, A.M.M. 77,(1970), 259-264
[3] O.Taussky, Positive Definite Matrix, New York Academic Press, 309-319

Technical University of Cluj-Napoca
Department of Mathematics and Computer Science
C. Daicoviciu 15, 400020 Cluj - Napoca, Romania

E-mail address: vasile.pop@math.utcluj.ro

[^0]: Received: 01.09.2004. In revised form: 12.12.2004.
 2000 Mathematics Subject Classification. 41A48, 11E10, 05B20.
 Key words and phrases. Matrix positive definite, quadratic form, incidence matrix.

