
AN APPLICATION OF BINARY TREES

Vasile LUPŞE, Ovidiu COSMA

Abstract This article presents an application of binary trees in the
merge of two or more lots, without requiring a previous sorting of
the data.

Keywords: binary trees, search trees, graphs

Introduction

A tree is a connected graph without cycles. A tree has the following
properties:

There is a node in which no arch enters, and it is named root. Excepting
the root, every other node has the property that in it enters a single arch. This
connects the node with another node named predecessor or parent. One or mode
arches can come out of a node. Every arch connects the node to another one
named successor or sun.

The nodes ore organized in several levels, the first level being occupied
by the root. The nodes in the last level are named terminal nodes or leaves. No
arch comes out of the leaves. The nodes can contain any type of information.
This information is named the keys of the tree.

A binary tree has the property that every node has at most two
successors. They are named left and right successors. The memory
representation of binary trees can be made by static or dynamic allocation.

In this paper the dynamic allocation will be used. In every node both the
useful information and the connections to the successors will be placed. The
following data type is defined for this purpose:

type pnod=^nod;
nod=record

info:integer;
left,right:pnod;

end;

The useful information can be of any type, not necessary integer, as in
the above example. The left and right identifiers are pointers to the left
respectively right successor.

A binary tree example is presented in figure 1.

2 V. Lupşe, O. Cosma

a

b c

d e f

g h

Figure1: Binary tree example.

1. The crossing of binary trees

The crossing of a binary tree, implies visiting of every node, in a certain
order. A reference to the root of the tree is necessary for performing this
operation. The following crossing algorithms are known:

A.) Root – Left subtree – Right subtree, also named pre-order crossing.
The following procedure can be used to perform this operation.

Procedure pre_order(p:pnod);
 begin

if p<>nil then
 begin

write(p^.info);
pre_order(p^.left);
pre_order(p^.right);

end;
 end;

B.) Left subtree – Root – Right subtree, also named in-order crossing.
The following procedure can be used to perform this operation.

AN APPLICATION OF BINARY TREES 3

Procedure in_order(p:pnod);
 begin

if p<>nil then
 begin

in_order(p^.left);
write(p^.info);
in_order(p^.right);

 end;
 end;

C.) Left subtree – Right subtree – Root, also named post-order crossing.
The following procedure can be used to perform this operation.

Procedure post_oreder(p:pnod);
 begin

if p<>nil then
 begin

post_order(p^.left);
post_order(p^.right);
write(p^.info);

end;
 end;

2. Binary search trees

A binary search tree is a binary tree that has the property that for each
node the key in the left successor is smaller than the key in the node and the
right successor key is greater than the node key.

We consider that the theoretical concept is extremely simple, but the
applications in the information retrieval are spectacular.

The creation of a binary search tree is performed by the next application.

program search_tree;
 type pnod=^nod;
 node=record
 info:integer;

left,right:pnode;
 end;
 var rad:pnode,x:integer;

4 V. Lupşe, O. Cosma

procedure create_node(var q:pnode,x:integer);
 begin

if q<>nil then
begin

if x<q^.info then
create_node(q^.left,x)

else if x>q^.info then
create_node(q^.right,x)

else
writeln(‘element exists’);

end
else

begin
new(q);
q^.info:=x;
q^.left :=nil ;
q^.right:=nil;

end
 end ;

procedure pre_order(p :pnode) ;
 begin

if p<>nil then
begin

write(p^.info);
pre_order(p^.left);
pre_order(p^.right);

end;
 end;

begin
rad:=nil;

 write(‘x=’); readln(x);
while x<>0 do

begin
create_node(rad,x);
write(‘x=’); readln(x);

end;
pre_order(rad);

end.

AN APPLICATION OF BINARY TREES 5

Observations

a.) The keys of a binary search tree are distinct, because the presented
algorithm does not allow the duplication of the same key.

b.) The smallest and the greatest of the keys can be easily retrieved because
the smallest is placed in the left-most node (the left-most leave
predecessor) and the greatest key is placed in the right-most node.

c.) The left-most and right-most leaves can be easily accessed starting from
the root, and following only left-successor respectively right-successor
connections.

d.) The information retrieval applications are based on the observation that
in real situations, the data used for building the tree is usually supplied
in a random order. This aspect assures that the constructed tree will not
be a degenerated tree (list).

4. Possible application of search trees

The following applications of search trees are possible:

− Arrays sorting;
− Merge of two or more arrays, that do not need to be previously sorted;
− The determination of the maximum and minimum value of an array.

REFERENCES

 1.Knuth D.E.,”Tratat de programarea calculatorului.Algoritmi
fundamentali”,Editura Tehnica,1974.
 2.Knuth D.E.,”Tratat de programarea calculatoarelor”(vol 3)(Sortare si
cautare),Editura Tehnica,Bucuresti,1976.
 3.Livovski L.,Georgescu H.,”Sinteza si analiza algoritmilor”,Bucuresti,1986
 4.Manber U.,”Introduction to Algorithms ,A Creative Aproach”,1989.
 5.Mateescu E,Maxim I.,”Arbori”,Editura Tara Fagilor,Suceava,1997.

 Received: 18.05.2004

Department of Mathematics and Computer Science
Faculty of Sciences, North University of Baia Mare

E-mails: vasilelupse@yahoo.co.uk
cosma@alphanet.ro

	AN APPLICATION OF BINARY TREES
	Vasile LUPŞE, Ovidiu COSMA

	Keywords: binary trees, search trees, graphs
	Introduction
	REFERENCES

