CREATIVE MATH. **13** (2004), 27 - 30

A Characterization of the Golden Section, or of the Constant of Fibonacci

Andrei Vernescu

ABSTRACT. It is well-known that the famous golden number $\alpha=(1+\sqrt{5})/2$ admits the following two representations

$$x(a) = \sqrt{a + \sqrt{a + \sqrt{a + \dots}}}$$

$$y(b) = b + \frac{1}{b + \frac{1}{b + \dots}}$$

with a = b = 1.

We prove the converse implication, i.e. if a number A admits the both representations x(a) and y(b) with the same parameter a=b, then it results obviously that a=b=1 and $A=x(1)=y(1)=\alpha$.

1. Introduction

As well known, the famous golden section $\alpha = (1 + \sqrt{5})/2$, closely involved in the analytic structure of Fibonacci numbers F_n and Lucas numbers L_n , admits the following two representations

$$\alpha = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}} \tag{1.1}$$

$$\alpha = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots}}} \,. \tag{1.2}$$

Of course, the precise signification of these two previous formulas is that if we consider the sequences of real numbers $\{x_n\}$ and $\{y_n\}$ defined by the equalities

$$x_n = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots + \sqrt{1}}}} \, n \text{ radicals}$$

$$(1.3)$$

$$y_{n} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \dots + 1}}}$$
, (1.4)

Received: 19.07.2004. In revised form: 10.12.2004.

2000 Mathematics Subject Classification. 11B39, 30B70, 40A05.

Key words and phrases. Recurrent sequences, continued fractions, golden number.

then these are convergent and we have

$$\alpha = \lim_{n \to \infty} x_n$$

and

$$\alpha = \lim_{n \to \infty} y_n.$$

A more general case is given by the sequences $\{x_n(a)\}\$ and $\{y_n(b)\}\$ with a, b > 0, having the general term described by the equalities:

$$x_n(a) = \sqrt{a + \sqrt{a + \sqrt{a + \dots + \sqrt{a}}}}$$
 $n \text{ radicals}$ (1.3')

$$y_n(b) = b + \frac{1}{b + \frac{1}{b + \frac{1}{b + \cdots + b}}}$$
 (1.4')

These sequences also are convergent and analogously define the numbers:

$$x(a) = \sqrt{a + \sqrt{a + \sqrt{a + \dots}}}$$
 (1.1')

$$y(b) = b + \frac{1}{b + \frac{1}{b + \frac{1}{b + \cdots}}}$$
(1.2')

i.e.

$$x(a) = \lim_{n \to \infty} x_n(a)$$
 and $y(b) = \lim_{n \to \infty} y_n(b)$.

The formulas (1.1) and (1.2) show us that the constant of Fibonacci α possesses simultaneously two representations: of type (1.1') and of type (1.2'), with the same a and b, more, with the "simplest" value of a and b, namely a = b = 1.

In this paper we emphasize that the converse affirmation holds: if a real number A possesses simultaneously two representations of the form (1.1') and (1.2') with the same parameter a, i.e. A = x(a) = y(a), then it follows obviously that a = 1 and $A = \alpha$.

2. A LITTLE RECALL

In order to establish the convergence and the limit of the sequences (1.3') and (1.4') it is necessary to consider and to use the recurrences

$$x_{n+1}(a) = \sqrt{a + x_n(a)} = f(x_n(a))$$
 (with $x_1(a) = \sqrt{a}$) (2.1)

and

$$y_{n+1}(b) = b + \frac{1}{y_n(b)} = g(y_n(b))$$
 (with $y_1(b) = b$), (2.2)

where the expressions of the functions f and g are obviously $f(x) = \sqrt{a+x}$, for x > -a and $g(y) = b + \frac{1}{y}$, for y > 0.

So, for the sequence $\{x_n(a)\}$, we obtain the inequalities $x_n(a) < x_{n+1}(a)$ and $0 < x_n(a) < \frac{1+\sqrt{1+4a}}{2}$ ([2], A supplement of the Chapter VI), therefore the sequence $\{x_n(a)\}$ is increasing and bounded. So ([1] page 74, or [3], 3.14) the sequence is convergent. Passing to the limit for $n \to \infty$ in (2.1) we find that x(a) is the fixed point of f, i.e. the solution of the equation x(a) = f(x(a)), or $x^2(a) - x(a) - a = 0$, for which the unique positive solution is

$$x(a) = \frac{1 + \sqrt{1 + 4a}}{2}. (2.3)$$

Concerning the sequence $\{y_n(b)\}\$, we remark that

 $0 < y_1(b) < y_3(b) < \ldots < y_{2k-1}(b) < \ldots < y_{2k}(b) < \ldots < y_4(b) < y_2(b)$ i.e. the subsequences $\{y_{2k-1}(b)\}$ and $\{y_{2k}(b)\}$ are both monotone and bounded, therefore convergent. Passing to the limit in the recurrences $y_{2k+1}(b) = (g \circ g)(y_{2k-1}(b))$ and $y_{2k+2} = (g \circ g)(y_k(b))$, we obtain that both the previous sequences have the same limit which is the fixed point of $g \circ g$, i.e. the solution of the equation y(b) = g(g(y(b))). After a little calculation, we obtain that y(b) is the unique positive solution of the equation

$$y^2(b) - by(b) - 1 = 0,$$

namely

$$y(b) = \frac{b + \sqrt{b^2 + 4}}{2} \tag{2.4}.$$

Of course, for a=1 and b=1, we obtain the convergence of sequences $\{x_n\}$ and $\{y_n\}$ of (1.3) and (1.4), finding the limits (1.1) and (1.2), i.e. $x(1)=y(1)=\alpha$. So, these represent the simplest limits of type (1.1') and (1.2'), associated to the simpler values of a and b, namely a=b=1.

3. The result

The result which we present now and was shortly announced in our introduction, has a simple aspect and an elementary proof, but we do not meet it in the literature.

Theorem 1. If x(a) = y(a), then a = 1 and $x(a) = y(a) = \alpha$

Proof. We take into account that the values of x(a) and y(a), given by (2.3) and (2.4) must be equal and we obtain the equation

$$\frac{a+\sqrt{a^2+4}}{2} = \frac{1+\sqrt{1+4a}}{2} \tag{3.1}.$$

This leads us to the solutions a=1 and a=0, which is not acceptable. So a=1 and $x(a)=y(a)=\alpha$.

The intersection of the graphs of the functions $f(a)=a+\sqrt{a^2+4},\ a\in\mathbb{R}$ and $g(a)=1+\sqrt{1+4a},\ a\geq -\frac{1}{4}$ can illustrate, these solutions more.

So we have obtained that:

The unique real number which admits simultaneously two representations of the form (1.1') and (1.2') for the same a is the golden section i.e. the constant of Fibonacci α and a = 1.

4. A REMARK MORE

The formula (1.2) also can be generalized in another way, namely considering the sequence $\{z_n(n)\}\$ defined by the recurrence

$$z_{n+1}(a) = 1 + \frac{a}{z_n(a)}$$
 (with $z_1(a) = 1, \ a > 0$). (4.1)

So, we obtain

$$z_{n}(a) = 1 + \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \cdots + 1}}}}$$
 (4.2)

But the right part of (4.2) and also the limit of this sequence, namely

$$z(a) = 1 + \frac{a}{1 + \frac{a}{1 + \frac{a}{1 + \cdots + a}}}$$

do not represent a continued fraction, because the defining value 1 of the "superior layer" of (1.4') was interchanged with the value b of the "inferior layer" (and are now a). We have so

$$z_{n+1}(a) = 1 + \frac{a}{z_n(a)}$$
 (with $z_1(a) = 1, \ a > 0$).

The convergence of the sequence $\{z_n(a)\}$ can be established in a similar way as the previous convergence of $\{y_n(b)\}$, but concerning the limit, we obtain (a little

surprise!) as for
$$\{x_n(a)\}$$
, $z(a) = \lim_{n \to \infty} z_n(a) = \frac{1 + \sqrt{1 + 4a}}{2}$.
So, we have obtained the following

Theorem 2. For any a > 0, the sequences $\{x_n(a)\}$ and $\{z_n(a)\}$ have the same limit

$$x(a) = z(a) = \frac{1 + \sqrt{1 + 4a}}{2}.$$

(Of course, if a = 1, then $x(1) = z(1) = \alpha$)

References

- [1] Richard Courant and Fritz John, Introduction to Calculus and Analysis, Volume One, Interscience Publ. (J. Wiley and Sons, Inc.), New York Sydney, 1965
- Richard Courant and Herbert Robbins, What is Mathematics?, Oxford University Press, London, 1941
- [3] Walter Rudin Principles of Mathematical Analysis, Mc Graw-Hill Book Company, New York San Francisco Toronto, London, 1964

Valahia University of Târgoviste

FACULTY OF SCIENCES

Bd. Unirii no. 18, 130082 Târgovişte, Romania

E-mail address: avernescu@pcnet.ro