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Numerical methods for solving a Black-Scholes
equation

Ioana Chiorean

Abstract. The Black-Scholes equation is one of the most used formula for evaluating European
call options without dividents. The aim of this paper is to study the possibility of a parallel

execution in order to obtain a numerical approximation of the solution.

1. Introduction

It is known that the Black-Scholes equation is used to determine the value of
an option. It provides quantitative information to continuously buy or sell assets
to maintain a portfolio that grows at the riskless rate and thus provides insurance
against down turns in the value of assets held along or protect against a risk in the
value of assets held short. Under this circumstances, the portfolio is hedged against
looses and so the option serves as an insurance policy.

According with [2], [4], [5], [6], the Black-Scholes equation for evaluating the
value of an option is:
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where V denotes the value of an option and it is a function of the current value
of the underlying asset, S, and time, t: V = V (S, t); parameter σ indicates the
volatility of the underlying asset and r is the interest rate.

In order to have an unique solution, which is the desired value of the option,
some boundary conditions must be imposed, e.g.

V (S, t) = Va(t) on S = a and V (S, t) = Vb(t) on S = b (1.2)

where Va and Vb are given functions of t.
Also, there exist a final condition in time, such as:

V (S, t) = VT (S) on t = T (1.3)

where T is the expiry and VT is a known function.

Note 1. If the equation is ”backward” in time, we impose a final condition like
(1.3). If it is ”forward” in time, we impose an ”initial” condition on t = 0.

2. The Black-Scholes equation for an European call option

The simplest financial option, an European call option, is a contract with the
following conditions [6]:

• At a prescribed time in the future, known as the expiry date, the holder
of an option may:

– purchase a prescribed asset, known as the underlying asset, for a
– prescribed amount, known as the exercise price.

Note 2.1. The option to buy an asset is known as a call option. Then exist, also,
the option to sell an asset, known as a put option.

Note 2.2. There are, also, other call and put options, not only the European ones,
e.g. the American options. It has nothing to do with the continents! An American
option is one that may exercised at any time prior to expiry. An European option
may be exercised only at expiry.

In what follows, we take into account an European call option, with the value
C(S, t).

Note 2.3. In (1.1) and (1.2), V (S, t) is denoted by C(S, t). Then, the Black-
Scholes equation and boundary conditions are:
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with
C(0, t) = 0, C(S, t) ∼ S as S →∞

and
C(S, T ) = max(S − E, 0),

where E is the exercise price.
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3. The finite-difference method

The Black-Scholes equation can be solved analytically for some options, but for
others, a numerical attempt is preferred. The most common method used is that
of the finite-difference. It constitutes a very powerful and flexible technique and, if
applied correctly, generates accurate numerical solutions.

In order to get the discretized form of (2.1), as in [6], we use the mesh, like in
Figure 1. The nodes along the S-axis are spaced by distance ∆S and along the
t-axis are spaced by ∆t. The plane (S, t) will be divided in the mesh points, of
the form (n∆S, m∆t). Then we denote

Cm
n = C(n∆S, m∆t)

for the value of C(S, t) at the mesh point (n∆S, m∆t).

Figure 1. The mesh for the finite difference approximation.

Under this circumstances, using a forward difference in time and a centered one in
space (for S), we get the following discretized Black-Scholes equation:
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with the boundary conditions:

Cm
n = Cm

N− = C−∞(N−∆S, m∆t), 0 < m ≤ M

Cm
n = Cm

N+ = C∞(N+∆S, m∆t), 0 < m ≤ M

C0
n = C0(n∆S), N− ≤ n ≤ N+

(3.2)

Note 3.1. To solve the problem, we get a finite but large enough, number of
S-steps:

N−∆S ≤ S ≤ N+∆S

where N− and N+ are large positive integers.

Note 3.2.The time axis will be divided, to expiry, into M equal time-steps, so
that

∆t =
1
2
σ2 · T/M.

Making the calculus in (3.1), we get the discretized equation:

Cm+1
n = ACm

n+1 + BCm
n + DCm

n−1 (3.3)
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where

A = − S ·∆t

(∆S)2
·
(
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)
B = ((∆S)2 + σ2 · S2 ·∆t + r · S ·∆t ·∆S + r ·∆t(∆S)2)/(∆S)2

D = −(σ2 · S2 ·∆t)/2(∆S)2

(3.4)

with the boundary conditions given by (3.2).
One can see that (3.3) is obtained by an explicit finite difference discretization,

it means that, if at time-step m we know Cm
n for all values n, we can explicitly cal-

culate Cm+1
n , because it depends only on Cm

n+1, Cm
n and Cm

n−1, as shown in Figure
2.

Figure 2. Explicit finite-difference discretization

4. Algorithmic aspects of computing the numerical approximation
for the Black-Scholes equation

A simple pseudo-code, using one processor, can be written for the explicit finite
difference equation (3.3):

{Compute A, B, D according with (3.4)}
for n:=Nminus to Nplus do

oldC[n]:=C_zero(n*dS);
for m:=1 to M do
begin

newC[Nminus]:=C_m(Nminus*dS,m*dt);
newC[Nplus]:=C_p(Nplus*dS,m*dt);
for n:=Nminus to Nplus do

newC[n]=A*oldC[n+1]+B*oldC[n]+D*oldC[n-1];
for n:=Nminus to Nplus do
oldC[n]:=newC[n];

end

It is clear that the execution time is of order O(M ∗ (Nplus − Nminus)). It can
be reduced by means of parallel calculus, using several processors (see [1]). In [3],
a parallel approach is given, based on the binary method. Because every Cm+1

n

depends upon three values of the previous time-step m, our idea is to use a linear
connectivity among processors, like in Figure 3.

Figure 3. The linear network
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According with this type of network, every processor Pn communicates with its
neighbours from the left and right, Pn−1 and Pn+1. If we think that every proces-
sor memorizes the precomputed values, A, B and D according with (3.4), and the
boundary conditions (3.2), then, using p = Nplus − Nminus + 1 processors, we
compute (3.3) in the following manner:

for i:=1 to p in parallel do
oldC[i]:=C_n_zero(n*dS)

for m:=1 to M do
for i:=1 to p in parallel do
begin

newC[n]:=A*oldC[n+1]+B*oldC[n]+D*oldC[n-1];
oldC[n]:=newC[n]

end;

It is clear that the time of execution is of order M , so we get a linear speed-up.
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