
CREATIVE MATH.
13 (2004), 71 - 78

.

A VoiceXML Application

Marieta Gâta

Abstract. Paper presents a Voice XML application (a slimmed down personal information

manager) with the following features: address book, appointment calendar, and to-do list. This
realistic application is accessible through voice, wireless, and Web interfaces. The application

interacts using with the user using speech recognition and speech synthesis technologies.

1. General Specification

The paper presents an application that uses a simplified personal information
manager (SPIM). This application is a small personal information manager with the
features like: address book, appointment calendar and to-do list. This application
is accessible through voice and Web interfaces. The developing of such application
means:

- Use Case analysis
- Top-Level Use Case
- Edit Contact Information Use Case
- Running Late Use Case
- Review Schedule List Use Case
- Object Model
Use Cases Analysis
A full personal information manager can be used in many ways, and full case

analyses involve many use cases. In a sample application I will leave room for future
growth. It can be implemented a variety of functions. In this application I will focus
on three representative use cases for the simplified personal information manager
application. These cases are representative and underlying technology involved and
how it is used.

The use cases are as follows:
-editing information about a contact (for example: name, address, phone number,

email)
-handling a scheduled appointment that you’re late for
-reviewing your list of things to do today
Next sections elaborate on these cases.
Top-Level Use Case
The top-level use case diagram shows the intentionally limited scope of the sim-

plified personal information manager application. In a real simplified personal in-
formation manager application there would be many more use cases at this level,

Received: 10.09.2004. In revised form: 13.11.2004.
2000 Mathematics Subject Classification. 68N15, 68T10, 68T50, 92B20.
Key words and phrases. VoiceXML, Voice User Interface, speech recognition, speech synthesis

.

71



72 Marieta Gâta

for example, “call a contact”, “schedule an appointment”, “add an address to an
existing contact” and so on.

During use case analysis, SPIM User’s access mode (eye or ear) is not assumed
or implied unless the access mode is intrinsic to the requirements of the use case.
For example, the use case in the next section (titled “Edit Contact Information
Use Case”) should be the same regardless of access mode, because it is an essential
function of the system. On the other hand, a hypothetical “Dial Roadside Assistance
from My BrokenDown Car” use case could, dubitable, presume that the user is
accessing the system through a VUI or WUI, but not a GUI.

The next sections train another level in this scenario. Every case starts with the
Authenticate use case. This shared case models the process of identifying the user to
the system. Conventionally, authentication is performed by an username/password-
based login, but it may use another mechanism for voice.

Edit Contact Information Use Case
We assume the next situation. If you received a change of address notice in the

mail from a friend, you are not going to call the friend right now or schedule a
meeting with him or her, but you want to record the address change. First, you
look up the existing contact information for your friend, and then you selectively
modify it. To look up it, you can either browse your address book (if it’s small) or
search your address book by name. Once you have the information at hand, you
can either review it in summary form (the types of address you have on a file) or in
detailed form (a full listing of address contents). Then you update the fields that
have changed.

Running Late Use Case
Here we assume an ordinary experience. Your schedule is agglomerated and

you’ve just escaped from a meeting that runs over. You don’t have time to resched-
ule things, so you want to notify your next appointment that you’ll arrive late. You
access your SPIM, get the relevant contact information for your next appointment,
and communicate the fact that you’ll be late, by the best means possible: email,
phone call, wireless text message, or mail.

Review Schedule List Use Case
To refresh your memory on what you have scheduled for the upcoming week,

you want to review your appointments on a day-by-day basis. In your SPIM, you
identify the day you’re interested in and then review that day’s planned activities.
As you progress through your list of appointments, you want to scan quickly, ignore
things you already recall, and selectively focus on particular items of interest.

Object Models
The main points in this SPIM are follows:
-a contact is an entity that you communicate with. To initiate communication

with a contact, you can use an address that is appropriate for you chosen commu-
nication method (a phone number for a phone call, an email address for email, and
so on).

-an appointment is a scheduled event that involves you and one or more contacts
with which you will interact. The venue specifies how the interaction will occur
(physical meeting, teleconference, and so on).



A VoiceXML Application 73

-a schedule is a list of appointments that fall in a given time span (this afternoon,
today, tomorrow, and so on).

Figure 1 captures the relationships between these objects.
The way of Voice XML structures for interaction with user is dialogs. A dialog is

consisting of a sequence of prompts spoken by the computer and responses spoken
by a person. Responses given by the person by speak or key using a keypad.
In contrast with GUI windows which are multitasked and two-dimensional, VUI
Dialogs are sequential and linear by nature.

Architecturally, VoiceXML interfaces are event-driven interfaces like GUIs. In a
dialog, the computer speaks a prompt and then waits for the user to respond to
it. The computer waits until a speech recognition event occurs. A speech recog-
nition event is initiated by the speech recognition engine, which is continuously
analyzing the user’s speech and attempting to match it to expected responses in
the dialog. There are a lot of possible speech recognition events, including “recog-
nized responses ... ”, “got a responses but did not recognize it”, ’no response” and
so on. Unlike GUIs and WUIs, where the events that drive the interface are low-
level, non-equivocal incidences (button pressed, mouse clicked, and so on), events
in VoiceXML interfaces are the result of complex, computation-intensive, possible
processing with errors.

Figure 1 – Application Menu Hierarchy Structure
Example of utterance for a scheduled time
Call Emma.
Meet Laura at 100.
Teleconference Michael on Thursday.
Meet George on Sunday at 9 p.m.



74 Marieta Gâta

Example of utterance for a time period
Today.
Tomorrow afternoon.
Next Monday.
January twenty two thousand and four after two fifteen pm.
Saturday from three to six.
July eighteen two thousand and four from seven fifteen am through July eighteen

eight thirty pm.
Example of interrogation for Add appointment (an appointment involves

another person, a scheduled time and a location)
C (computer): Add appointment. You may say help at any time.
P (person): Call Laura.
C: What day will you meet?
P: Wednesday.
C: What time will you meet?
P: 8 p.m.
C: Where will you meet?
P: Work.
C: You have a call with Laura on Wednesday at eight pm at work.
C: Add appointment.
P: Call Emma on Saturday.
C: Time?
P: 3 p.m.
C: Where?
P: Home.
C: You have a call with Emma on Saturday at three pm at home.

Figure 2 - XML Schema for Web

Figure 3 – Application Content Model

2. Anatomy of the Application

The database is named spim.mdb and this database has four tables: Ap-
pointment, Contact, LocaleLabels and MediaLabels. The table Contact has
Id, FirstName, LastName, HomePhone, FAXPhone, BusinessPhone, CellPhone,
EmailPrimary, EmailSecondary, HomeAddress1, HomeAddress2, HomeCity, Home-
State, HomeCountry, HomePostalCode, BusinessAddress1, BusinessAddress2,
BusinessCity, BusinessState, BusinessCountry, BusinessPostalCode, Nickname,
s ColLineage, s Generation, s GUID, s Lineage, Appointment. MediaLabels has
Id, MediaType, s ColLineage, s Generation, s GUID, S Lineage, Appointment.
LocaleLabels has Id, LocaleLable s ColLineage, s Generation, s GUID, S Lineage,
Appointment. Appointment has Contact, Id, Owner, StartTime, EndTime,
Medium, Locale, Descrip-ion, Gen Description, s ColLineage, s Generation,
s GUID, s Lineage. Each table has a generated primary key (Id) that uniquely
identifies the entity. The Appointment table uses a Contact ID as a foreign key



A VoiceXML Application 75

to the Contact table. This models whom the appointment is with. Auxiliary
tables map integer-coded values for meeting locales and media to text string.
Root element for the application contains subelements ownerId, Appointment
and Contact. Each of these contains various attributes and subelements that
capture all the information needed to generate HTML or VXML. Appointment
contains ScheduledTime, AttendeeContact, AttendeeName (which means Per-
sonalNameType), locale (which means AddressType), Medium, Description.
Contact is compound from name, HomeAddress, BusinessAddress, HomePhone,
FAXPhone, BusinessPhone, MobilePhone, E-mailAddress. Each person has a
PersonalNameType with Nickname, FirstName and LastName. An AddressType
consist of an optional one or two AddressLine followed by a City, State, Country
and PostalCode (any or all can be omitted). Most elements are optional to allow
for partial information being stored in the database. Furthermore, an integrity
constraint (for example, there must be a city) probably should be enforced in the
database, not the middle tier.
To associate Appointments and Contacts, XML ids are used. An id is an intradoc-
ument link that can be used to uniquely identify an XML element within a single
document.
When data is retrieved through a database query, the data is mapped into a single
XML format. The XML format consists of a header (which identifies the SPIM
user) and one or more Appointment elements followed by one or more Contact
elements. Depending on the context for the query, the application determines how
to interpret the relationships between Appointments and Contacts. For example,
if the user is reviewing his or her calendar, there may be multiple appointments
and multiple contacts (corresponding to the appointments within a given time
period). For the Running Late function in the application, there will be at most
one Appointment (scheduled for the current time) and one corresponding Contact.
The main menu of the application has three choices: Calendar, Address Book,
To-Do List and one link Running Late like in Figure 1.

Figure 4 – Application Schema

Figure 5 - Appointment

Figure 6 – Personal NameType
Implementation
For the implementation I used: XML Spy, A Web browser, a VoiceXML browser,

a Web server and a servlet container, an ODBC data source. XML Spy is the XML
IDE used to develop and bench-test XML, XSL, and schemes. The Web browser is
Microsoft Internet Explorer. The

Figure 7 - Contact



76 Marieta Gâta

Figure 8 - AddressType
browser is the IBM WebSphere Voice Server SDK 1.5. JRun plays the part of
Web server and servlet container. Microsoft Access, acting as a nonproprietary
ODBC/JDBC data source, plays the role of database. Apache Cocoon provides the
framework for generating and transformation XML in the Web server.

Minimum requirements
My machine is equipped with RAM 512 MB, 40 GB disk, Intel Celeron 2.8 GHz

processor, so I did’n hit any memory or disk limits. Base on prior experience I
estimate that you should have at least 128MB of RAM (256MB preferable), 1GB
of disk and a Pentium III processor.

The Purpose of the Application
The purpose of the application is to demonstrate the feasibility of the architecture

and provide a model for developing a “real” implementation. You can use this
application and the information as a concrete pedagogical example, or you can
actually install the components and make it work on your own computer.

References

[1] Abbott, K.R., Voice Enabling Web Applications: VoiceXML and Beyond, Apress, Berkely,

(2002), USA.
[2] Phillips, L.A., Special Edition Using XML, QUE Corporation, (2002), USA.
[3] Becchetti, C. ad Ricotti, L.P., Speech Recognition Theory and C++ Implementation, John

Wiley & Sons, West Sussex,(1999) England
[4] Rabiner, R L. and Juang, B.H., Fundamentals of Speech Recognition, Prentice Hall, New

Jersey, (1993) USA

North University of Baia Mare
Department of Mathematics and Computer Science
Victoriei 76, 430122 Baia Mare, Romania

E-mail address: marietag@ubm.ro


