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Software issues in solving initial value problems for
ordinary differential equations

Dana Petcu

Abstract. A vast collection of mathematical software, representing a significant source of

mathematical expertise, is available now for use by scientists and engineers in their efforts for
modelling the evolution of real systems. Unfortunately, the heterogeneity of this collection makes

difficult the task to determine what software is available to solve a given problem.
We discuss the state-of-the art in the field of software for ordinary differential equations (ODEs)

and several issues which are of importance both from the point of view of software design and
software or method evaluation. The survey is based on the analysis of current software: computer

algebra systems including ODE solving facilities, dedicated problem solving environments, and
specialized free or commercial packages. A special attention is paid to stiff and large ODE systems
and parallel solvers. The requirements of an expert system for solving initial value problems (IVPs)
for ODEs are also discussed.

1. Introduction

The volume and diversity of the numerical software available for ordinary dif-
ferential equations has become, today, a problem. When confronted with many
software products, it is important for the user to have some knowledge of numerical
software and to know where this software can be optimally applied in order to be
able to choose the most appropriate software for a specific problem. A difficult
problem is also the selection of an adequate method from the method database of a
specific software product. In the case of an IVP for ODEs, a correct selection can
be done only knowing the problem properties.

In this paper we review the current available ODE software packages (Section 2)
and describe what it is expected today from a ODE solver (Section 3).

2. Current available ODE software

2.1. Special codes and search engines. Early knowledge about the numerical
solution of ODEs was transposed in a lot of codes. The most used language for ODE
solvers is Fortran due to the period in which these codes where developed. One can
find many such codes in the public domain by using current web searching engines
or classification schemes like GAMS [17]. We review here the most known codes
which are still used nowadays as they are or as black boxes behind sophisticated
interfaces.

ODEPACK [23], developed in 1983 and last updated in 2003, is a collection
of Fortran solvers for the IVP for ODEs. It consists of 9 solvers, namely a basic
solver called LSODE and 8 variants of it – LSODES, LSODA, LSODAR, LSODPK,
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LSODKR, LSODI, LSOIBT, and LSODIS. The collection is suitable for both stiff
and nonstiff systems. It includes solvers for systems given in explicit form y′ =
f(t, y), and also solvers for systems given in linearly implicit form, M(t, y)y′ =
g(t, y) (differential-algebraic equations, DAEs). Two of the solvers use sparse ma-
trix direct solvers for the linear systems that arise and two others use iterative
(preconditioned Krylov) methods. The most recent addition is LSODIS solving
implicit problems with general sparse treatment of all matrices involved.

LSODE, the Livermore solver for ODEs [43] (for explicit forms), the successor
of the package GEAR [7], treats in the stiff case the Jacobian matrix f ′

y as either
a dense or a banded matrix, and as either user-supplied or internally approximated
by difference quotients. It uses Adams methods (predictor-corrector) in the nonstiff
case, and Backward Differentiation Formula (BDF) methods in the stiff case. The
linear systems that arise are solved by direct methods (LU solver). VODE [4] is
similar to LSODE, but it uses variable-coefficient methods instead of the fixed-
step-interpolate methods in LSODE. VODPK [6] is a variant of VODE which uses
iterative preconditioned Krylov methods for the linear systems that arise, instead of
the direct methods in VODE. GEARBI [24] is a variant of the older GEAR package
which solves stiff and nonstiff systems, using BDF and Adams methods. In the case
of stiff systems, it uses a block-iterative method, Block-SOR, to solve the linear
systems that arise at each time step. GEARBI is designed for use on problems that
arise from the spatial discretization of PDE systems, such that the resulting ODE
system has a regular block structure. The Fortran code BiM [2], based on blended
implicit methods, implements a variable order-variable stepsize method for (stiff)
initial value problems for ODEs. The order of the method varies from 4 to 14,
according to a suitable order variation strategy. J.F. Cash [9] proposed a suite of
codes (last updated in 2000, Table 1) written in Fortran and implementing Modified
Extended BDFs (MEBDF).

KRYSI [25] is another solver for stiff systems, and is a variant of an implicit
Runge-Kutta solver called SIMPLE. Both KRYSI and SIMPLE use the same 3-
stage third order SDIRK method. But where SIMPLE uses a direct (dense) solver
for the associated linear systems, KRYSI uses a preconditioned Krylov method
(preconditioned GMRES iteration).

Netlib [27] collects and distributes the most used free codes for the numerical
solution of ODES. A short list of them is reproduced in Tables 2 and 3.

Several codes were developed to solve large systems of ODEs on parallel comput-
ers. A good example is the package developed at the University of Halle (Table 4)
which uses the standard Basic Linear Algebra Subroutines (BLAS) and LAPACK.

The Fortran codes from the successful ODE books like those of Hairer, [19] and
[20], are available on the net [21] and for some of them a Matlab interface was
already designed. Ode [3] (last update in 2001) is a Unix command-line ODE solver
which uses a slightly modified version of the 8th-order Runge-Kutta code DOP853
proposed by Hairer in [19].

The recent code GAM [16] (last update in 2003) numerically solves IVPs of
first order ODEs using boundary value methods, namely the Generalized Adams
Methods (GAMs) of order 3,5,7,9 with step size control.
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2.2. Testing the software. The testing of ODE solvers has been, until recently,
limited to comparing code performances using for example the DETEST set [14]
from 1975. More recent test sets are nowadays available on the web, e.g., the Geneva
test set [22], the IVPtestset [8], the ODElab [35], CWI test set[13], NSDTST and
STDTST [15], and PADETEST [1].

The development of adaptive software from mathematically methods entails se-
lecting termination criteria for iterative methods, constructing control structures

Table 1. Cash codes based on MEBDFs [9]

Code Type of problem and method specifics

MEBDFDAE stiff IVPs of ODEs in explicit form or DAEs with M a constant matrix.
MEBDFV stiff IVPs for systems of linearly implicit DAEs M(y)y′ = f(t, y).
MEBDFI IVPs for systems of implicit DAEs of the general form g(t, y, y′) = 0.
MEBDFSO stiff IVPs for very large sparse systems of ODEs of the explicit form; the

linear equation solver is the sparse solver YSMP; the code is particularly
useful in the solution of time dependent PDEs using the method of lines.

MEBDFSD stiff IVPs for very large sparse systems of DAEs with M a constant matrix;
the sparse solver used is MA28; the code has applications in the method of
lines solution of time dependent PDEs.

Table 2. ODE software on Netlib [27]

Code Type of problem/Method

composition ODE/composition methods, mostly palindromic schemes size
cvode large nonstiff or stiff ODE IVP/combines earlier vode and vodpk
dresol stiff and nonstiff matrix differential Riccati eqs/Adams’ formulae and BDSs
dverk ODE, global error control/Verner’s 5th and 6th order Runge-Kutta pair
epsode stiff ODE/BDFs (variable coefficient formulae)
mebdfdae stiff ODE and linearly implicit DAE IVPs/extended BDFs
mebdfso large sparse stiff ODE IVPs/extended BDFs
ode ODE IVP/Adam’s methods
odeToJava stiff, nonstiff ODEs/explicit Runge-Kutta, linearly implicit-explicit IMEX
parsodes large systems of stiff ODEs/multiimplicit Runge-Kutta with ”across the

method” parallelization in MPI
rkc parabolic PDEs/2nd-order explicit Runge-Kutta-Chebyshev formulae
rkf45 ODEs/Runge-Kutta Fehlberg 4th-5th order
rksuite ODEs/a suite of codes, choice of RK methods; includes an error assessment

facility and a sophisticated, stiffness checker
sderoot ODE,with root stopping/Adam’s methods
sode ODE/Adam’s methods
srkf45 ODE/Runge-Kutta Fehlberg 4th-5th order
svode nonstiff or stiff ODEs/BDFs (variable coefficient formulae)
svodpk large nonstiff or stiff ODEs/BDFs (variable coefficient formulae) with GMRES

with user-supplied preconditioner
vode nonstiff or stiff ODEs/BDFs (variable coefficient formulae)
vodpk large nonstiff or stiff ODEs/BDFs(variable coefficient formulae) with GMRES

with user-supplied preconditioner
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Table 3. DAE software on Netlib [27]

Code Type of problem/Method

coldae semi-explicit DAEs,index<=2/collocation,projection on constraint manifold
daspk DAE/BDFs with direct & preconditioned Krylov linear solvers
daskr DAE, with rootfinding/BDFs, direct & preconditioned Krylov linear solvers
ddassl stiff DAE/BDFs
ddasrt stiff DAE with root stopping/BDFs
dgelda general linear DAEs/package including a computation of all the local invariants of

the system, a regularization procedure and an index reduction scheme; implements
BDFs and Runge-Kutta schemes

mebdfi general implicit DAE IVPs, index<=3/extended BDFs
sdasrt stiff DAE, with root stopping/BDFs
sdassl DAE/BDFs

Table 4. Codes for large ODE systems [30]

Code Type of problem and method specifics

ROWMAP a ROW-code of order 4 with Krylov techniques for large stiff ODEs
EPTRK explicit pseudo two-step RK methods of order 5 and 8 for parallel computers
ROWMBS4 a 4th order partitioned Rosenbrock method for multibody systems, 8 stages
EPTRKN two explicit pseudo Runge-Kutta-Nyström methods of order 6 and 10
NYRA a Runge-Kutta-Nyström-type block predictor-corrector method for parallel

computers with shared memory

Table 5. Codes from the books [19] and [20] available on the net [21]

Code Type of problem and method used

DOPRI5 explicit Runge-Kutta method of order 5(4) for problems in explicit form
DOP853 explicit Runge-Kutta method of order 8(5,3) for problems in explicit form
ODEX extrapolation method (GBS) for problems in explicit form
ODEX2 extrapolation method (Stömers rule) for second order DEs y′′ = f(x, y)
RADAU5 implicit Radau IIA method of order 5 for DAE problems with constant and

possibly singular matrix M ; concerning the linear solvers the user has the choice
to link the program with LAPACK and other solvers.

RADAU implicit Radau IIA method of variable order (switches automatically between
orders 5, 9, and 13) for DAE problems with constant and possibly singular M

RODAS Rosenbrock method of order 4(3), for DAE problems with constant and possibly
singular matrix M ; algebraic order conditions verified; linear solvers – the user
can choose to link the program with LAPACK and other solvers.

SEULEX extrapolation method based on linearly implicit Euler for DAE problems with
constant and possibly singular matrix M ; linear solvers – same as for RODAS

SDIRK4 diagonally-implicit Runge-Kutta method of order 4 for DAE problems with
constant and possibly singular matrix M

ROS4 classical Rosenbrock methods of order 4(3), for DAE problems with constant
and possibly singular matrix M

SODEX extrapolation method based on linearly implicit mid-point rule for DAE prob-
lems with constant matrix

RADAUP implicit Runge-Kutta method of order 5, 9, or 13 (Radau IIA) for DAE problems
of the form with constant and possibly singular matrix M
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and objectives, and many more decisions. Most software constructors have taken
a heuristic approach to these design choices, invalidating the process of deducing
from software comparisons that one method is better than another [44].

2.3. Symbolic computations. When solving stiff IVPs, analytical Jacobians are
quite advantageous. Current CAS have an automated differentiation capability that
appeared to offer an exciting possibility of combining symbolic and numerical meth-
ods. When a numerical solution is requested, the solution is provided for discrete
values; the accuracy is constrained by hardware and the problem itself. The solution
can be obtained fast with the current hardware and one can solve large and complex
ODE systems. When a symbolic solution is requested, the solution is provided as a
function and one can get more-or-less arbitrary accuracy; the constraints of speed
and complexity cause emphasis on a few equations.

RKF45 is the Fortran code most widely used in CAS to numerically solve IVPs.
It is the foundation of the original default IVP solvers of the CASs (Maple rkf45,
Matlab ode45, Mathematica NDSolve). The dsolve command in Maple used with
the numeric option applies the (4,5) explicit Runge-Kutta. It works well if the
system is nonstiff. Maple procedures detects the stiffness as follows. For efficiency
reasons the step size must be as big as possible. However, the step size must be small
enough that the error at each step is less than a given tolerance the computation is
stable. If accuracy determines the step size, the IVP is nonstiff. If stability restricts
the step size severely, the IVP is stiff. In the stiff case a (3,4) Rosenbrock method
is used and the solver forms a procedure internally for evaluating the Jacobian
analytically. Supplementary options are available in Maple when the user loads
the ODEtools package [37]. Similarly, Odesolve ([36], last update in 2003) is a
MATLAB program for solving arbitrary systems of ODEs; it uses the programs
dfield and pplane which are described in some detail in [42]. It follows the ODE
Suite developed in 1997 [46].

Several comparisons of performances between different CAS were performed on
thousands of ODE systems and help to improve their facilities. Significant results
were obtained using the Kamke [32] and Wester tests [48].

Specialized software was also produced. For example Taylor [47] produces a
numerical solver (C program) for a given set of ODEs in symbolic form.

CATHODE and CATHODE 2 were two European ESPRIT projects (finalized
in 2000), concerning Computer Algebra Tools for Handling ODEs. They produce
a set of cooperating computer algebra tools for the manipulation and solution of
ordinary differential equations and systems. New algorithms were developed, and
implementations created (Table 6). NODES (Nonlinear ODEs Solver, [11]) for
Maple (1997) was developed of the first project CATHODE. Its goal was to develop
tools for handling dynamical systems. Its original aspect lies in the use of a matrix
notation for representing DEs (called the Quasimonomial Formalism). One matrix
is used for the coefficients and an other one for the exponents. Thanks to this
notation, usual techniques may be reformulated using only basic linear algebra and
become suitable for an efficient computer algebra implementation. The program
is the MAPLE implementation of the techniques which were developed. Note that
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Table 6. CATHODE-2 software[10]

Acronym Type of problem and method

BERNINA stand-alone interactive program for computing rational solutions, symmet-
ric and exterior powers, Darboux curves and invariants of linear ODEs

BOLD MAPLE package for computing error bounds for IVPs with linear ODEs.
CONLAW REDUCE package for determining conservation laws for PDEs or ODEs.
CRACK REDUCE package for solving overdetermined systems of PDEs.
DIFFGROB2 Maple package for computing differential Gröbner bases.
EXPSOL MAPLE package for computing exponential solutions of linear ODEs.
ISOLDE MAPLE package for computing formal invariants and local and global sym-

bolic solutions of systems of linear ODEs.
ODESOLVE REDUCE package for solving simple ODEs in closed form.
OMWS/OMD OpenMath Worksheet/Dispatcher is a client/server systems for offering

easy access to OpenMath - based computation over the internet.

NODES (Numerical ODEs) is also the name of another package [45] which was
partially added in the default solver in Maple 7.

2.4. ODE software for education. Traditional introductory courses in ODEs
have concentrated on teaching a repertoire of techniques for finding formula solu-
tions of various classes of DEs. The fundamental of stability, asymptotics, depen-
dence on parameters, and numerical methods are difficult to teach because they have
a great deal of geometrical content and, especially in the case of numerical methods,
involve a great deal of computation. Modern mathematical software systems can
help to overcome these difficulties.

The ease with which numerical routines could be implemented in a programming
language made the software a very useful pedagogical device. However, computer
technology distracted students from learning about differential equations. The scene
changed dramatically with the advent of symbolic manipulation programs which
made symbolic as well as numerical solutions of differential equations possible via
computers. In this context several books have appear in the last decade dealing with
using computing to teach ODEs. The book [18] for example provide a traditional
treatment of elementary ODEs while introducing the computer-assisted methods
that are available with Mathematica. The book [12] uses Maple to introduce nu-
merical methods, geometric interpretation, symbolic computation, and qualitative
analysis into an ODE course.

A Consortium of ODE Experiments (C*ODE*E [34]) was establish in 1992 (last
update in 1998) with the goal to share the rapidly growing wealth of computational
instruction techniques with as many teachers of differential equations as is possible.
ODE Architect was developed in the frame of CODEE in 1996. It combines rich
multimedia application with powerful yet easy-to-use custom mathematical tools.
The software is intended to provide a highly interactive environment for students to
examine the properties of linear and nonlinear systems of DEs, and to explore and
construct ODE modes of real-world situations, as well as self-designed models. It
combines mathematical simulation, graphic animations, hypermedia, and numerical
solvers to offer a complete multimedia learning environment, and a friendly, efficient,
and interesting way to study and explore ODEs.
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Table 7. A Windows and MS-DOS software collection for ODEs [26]

Type Software

Freeware or public domain Mafia, ODE, ODE’s slide show, Linear ODEs, Pop-
ulus, Slopes, Transmath, VisualMethods, Graphing
separable equations, Ready for ODEs, Calculus and
DEs, Midshipman DE program

Shareware, all features enabled Graphmatica
Shareware, some features disabled Formula wizard, ODEcalc, SymbMath
Commercial software Biograph, Logistic, MicroCalc, MLab, Models, ODE

workbench, Phaser, Chaos Simulations, Chaotic Dy-
namic Workbench, Chaotic Mapper, DEGraph

Demo of commercial software tour of Maple, Chaos demonstrations

A Windows and MS-DOS software collection for ODEs (last update in 2001) is
available from 1996 [26] and includes description of several packages (Table 7) which
were described also in [39].

IDEA [28] is another effort to provide students and teachers around the world
with computer based activities for DEs in a wide variety of disciplines. IDEA
contains a database of computer activities illustrating both mathematical concepts
and the application of these concepts in a wide variety of disciplines. It provides
the software DynaSys (1997) that can be used to implement many of the activities.

Infinity (released in 2004, [29]) is a non-linear math application that allows to use
complex mathematical expressions within equations to describe the problem which
requires solution. Once the model is described using the common math language
one can see the result immediately.

2.5. Software classification. The actual software applications for ODEs can be
classified using some criteria as (a) the solving method – symbolic computations or
numerical computations, (b) the covered domain – general problem solvers or prob-
lem dedicated solvers, (c) the opening to new methods – build-in solving methods
or with some mechanisms for constructing new problem solvers.

The IVPs of ODEs can be classified in two categories: for which one can construct
an analytic solution and those for which one do not know how to construct an
analytic solution. In the first case, one can obtain a function which represent the
exact solution, using one of the actual computer algebra systems (CAS) which allows
symbolic computations. If the problem is simple, probably, the system will recognize
very fast the exact solution. Otherwise, one must apply some transformations to the
ODEs, or must use dedicated library procedures which are not in the system kernel.
Unfortunately, an overall mathematical knowledge is not translated in databases for
computer applications. If the try to obtain an analytic solution (using the computer
or an human expert) fails, one must try to approximate the exact solution. The
number of numerical methods which can be selected in order to due this task is
very large. The main question is which one is adequate to the given problem. The
answer depends on what quality level is requested for the approximation, the time
constrains, the knowledge of the solving method class.
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General purpose tools (for example, the CASs) have included a mechanism for
generating an analytical or numerical solution of an IVP for ODEs, which, unfor-
tunately, is not usefully for any kind of ODEs. On another hand, the number of
equations cannot be too large. To design a CAS for any mathematical problem is a
very hard task. The base idea of an actual CAS is to construct a kernel which solve
any simple problem and to use special library functions and procedures for more
complicated problems. These packages of dedicated function can be seen as prob-
lem dedicated software. Dedicated programs (for example Biograph) are almost all
designed with a friendly user interface and have been build with some fixed method
databases which are properly for specific classes of problems with a small number
of equations.

Method libraries (like Odepack) can be used in the integration of a wide variety
of large systems of equations if the user know which method must be selected for
his problem. The method database can be extended, but the user must have some
experience with the programming languages.

Problem solving environments (like Odexpert [31], Godess [38] and EpODE [40])
have the advantage of exploiting a knowledge database in order to select an appro-
priate method for a specific problem. Large systems of equations of different kinds
can be integrated using these tools. The user interface is generally designed in such
a way that it is possible to define a problem within a certain scientific or technical
context. After the problem has been specified with sufficient accuracy, the program
decides which subsystem or subprogram is to be used to solve it. The selection
mechanism ranges from simple decision trees to complicated expert systems whose
knowledge base come from specialists in the particular field. When the internal so-
lution mechanism has produced results, the problem solving environment put them
into a form which allows the user to interpret and use them.

3. Constructing an expert system for IVPs of ODEs

The main requirements of an expert system for ODEs are the following ones:
friendly user interface for problem specification, automatic detection of the prob-
lem properties like linearity, separability, the extreme eigenvalues of the Jacobian
matrix at the initial value (symbolic computation of the system Jacobian), stiff-
ness ratio, estimated time for the function evaluation, friendly user interface for
a difference method specification, automatic detection of the method properties
like explicit or implicit schema, method accuracy, stability properties, one-step or
multistep, one-stage or multistage, one-derivative or multiderivative types. It must
establish the matching between the problem properties and the method properties,
adequate integration step, approximate computation time, estimated error, and
then apply the numerical method and supervise the error. It must be possible to
create a list or a graphic of approximate solution values. It must be also possible
to solve the problem without the specification of a particular method: (i) choosing
an appropriate method from a database of classical methods (the selection is based
on a classification of the methods, and the database can be enlarged introducing
new methods using the above mentioned front-end); (ii) select a new method when
the previous one generates unreasonable errors; (iii) in the case of a large num-
ber of equations the expert recommends the use of the numerical codes combined
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with a message passing interface (like PVM and MPI) in the idea to distribute
the computations on some processors of a local network. The automatic selection
must be based on the problem properties and the user must control the maximum
computation time and the maximum level of the accumulated error of the approx-
imate solution relative to the exact solution. In order to interpret the results, the
approximate solution can be analyzed reading the table with the computed values,
or looking to some graphics in two or three dimensional space. The solvers for IVPs
must be implemented in a uniform way for several methods – an unique calling se-
quence for all methods, so that all solvers behave in a coherent way. New methods
must be easy to be added, tested, and verified under similar conditions.

3.1. Problem’s and method’s properties identification. The special prop-
erties of the problem must be identified, but unlike in the application with fixed
method set, some theoretical results about the characteristics of an difference method
can be checked. For the solution computational process very important are the
method order (which can be practically influenced by the starting procedure, in
the case of multistep methods) or the method stability properties (for example, the
boundless of the stability region can be influenced by the implicit equation solver
– these aspect is not always underlined when a new implicit method for ODEs is
described). The method order can be estimated applying the method to some test
equations and finding the accuracy of the approximate solutions. The domain of
A0-stability of each iterative method can be establish. A method which is A0-stable
can be a candidate for stiff-stability or A-stability (properties which are more com-
plicated to be establish numerically for any kind of iterative method, and which are
adequate for a stiff problem solver).

3.2. Unique generic solving procedure. Although it seems not possible to ex-
press all difference methods for ODEs in a same form (think to different representa-
tion of multistep, Runge-Kutta schemes, block, nonlinear, multiderivative, (A,B)-
methods, schemes with variable stepsize, etc.), from the programming point of view
it is possible to think to all of these methods as special cases of an generic iterative
procedure which must be used for any problem (some concessions have been make,
for example, it is very complicate to describe any possibility to approximate Jaco-
bian for an arbitrary function, and, therefore, it was more convenient to construct a
procedure for symbolic derivation of an arbitrary mathematical expression). One of
the multiple advantage of using a single generic solver procedure is the possibility
to compare different methods solving the same problem, especially using criteria
like approximate solution accuracy, computing time or effort.

3.3. Mechanisms for problem and method splitting. These tasks can be ac-
complished constructing dependency graphs and identifying the independent parts
of them – direct applications are the possibility of distributing the solution com-
putation on distinct processes running on different processors, and optimizing the
solution computation time and information storing (especially for sparse systems).

3.4. User interface for describing new iterative methods. A method ana-
lyzer must be behind these task which take each entry given by the user and inter-
pret. To describe an iterative method the user must specify the method variables
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which represent the entries for one iterative step, the outputs of the same step, the
intermediate variables requested to describe one iterative step, the output variables
which are considered as control variables in the error estimation procedure, the iter-
ative equations (relations between the entries, outputs and intermediate variables),
and how the outputs of one step are to be changed into entries to the next iterative
step. According to the properties detected by the method analyzer, supplementary
information must be provided by the user – for example, the implicit equation solver
in the case of an implicit method.

3.5. Method selection mechanism. Using a problem properties analyzer, an ex-
pert in ODE numerical solvers can estimate which class of methods are theoretically
indicated for the current problem – accomplishing this task automatically is not very
simple, and the simulation of the human expert remains an open problem. The soft-
ware can be designed to recognize stiff or nonstiff character of an IVP for ODEs, and
to consider, respectively, numerical methods for stiff or nonstiff problems (inside a
such class which method will be applied for the current problem depends on the
solution accuracy requirements and on the computational time restrictions). Just
before the approximate solution computation, the maximum stepsize, for which a
given level of solution accuracy is attained, must be automatically computed using
the method order and the current stability restrictions according the eigenvalues of
the Jacobian matrix.

3.6. Large set of problems and methods. In order to extend as much as pos-
sible the expert applicability, several problems must been tested from the point
of view of their known properties, and thereafter integrated with different meth-
ods. After the approximate solution computation, different classical statistics must
be reported: function evaluation, matrix inversions, Jacobian evaluations, comput-
ing time, number of integration steps. These statistics recorded for a large set of
problems can be used to compare different methods.

3.7. Parallel computations. The means of achieving parallelism in IVP solvers
can be classified into three main categories [5]: (1) parallelism across the system –
the possibility of partitioning the system of ODEs by assigning one single equation,
or a block of them, to each processor for concurrent integration; (2) parallelism
across the method – the possibility of distributing the computational effort of each
single integration step, or block of steps, among the various processors; (3) paral-
lelism across the time (or across steps) – even through it contradicts the intrinsic
sequentially of the problem, the possibility of concurrently executing the integration
over a certain number of successive time steps.

The most natural way to apply the parallelism across system is to decompose the
ODE system into several independent ODE subsystems. This decomposition is not
possible for any system. The software must be capable to detect the separability
of the ODE system into independent subsystems (a natural parallelism); a number
of processes equal with the number of subproblems will be created. A such pro-
cess works on his associated subsystem and must communicate only with the main
process which collects the results and display them.
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Parallelism across the method is the employ of the parallelism inherently avail-
able within the method. It can be achieved, for example, by computing the stages
of a Runge-Kutta method on different processor. A similar technique with the
digraph method, used for Runge-Kutta methods, can be adopted to determine the
degree of the parallelism of a given method. Each equation of the iterative proce-
dure associated with the numerical method is analyzed and a data flow graph is
determined. This graph is divided into stages and processes in a similar manner
with the level-process partitioning proposed for Runge-Kutta methods. An appro-
priate number of processes will be created. At a particular stage, each process is
responsible for the solution of one or more method equations. These equations are
to be changed from each stage to another, but, at a particular stage number, the
equations distributed to a process are the same at each integration step.

In parallelism across the time a number of steps is performed simultaneously,
yielding numerical approximations in many points on the time-axis in parallel. For
example in the case of a Jacobi waveform relaxation method, at the first stage, the
system of n differential equations is decoupled into n independent equations which
can be computed in n separated processes. At the next step, some n new equations
are integrated separately, and the difference between the old and the new solutions
must be computed. If this difference in a given norm is under the admissible error
level, the solution computation main process is stopped.

The implementation questions that need to be addressed in the development of a
parallel production code for the numerical solution of ODEs are considerably more
complex than in the sequential case. Such facets that must be considered include
the automatic load balancing of the work amongst processors, the avoidance of non-
determinacy and deadlock, whether synchronous or asynchronous communication
should be utilized and the avoidance of communication bottleneck, and finally the
gathering of appropriate performance statistics and suitable test problems. Com-
paring the proposed algorithms by measuring their performance on well-known pa-
rameters such as efficiency can really become a very difficult task. The comparison
should be made between the execution time of the parallel algorithms and the fastest
existent sequential algorithm running on the same machine. One can speak about
efficiency of the parallel algorithm implementation when there is a large number of
differential equations or a large integration interval (especially in the case of stiff
systems). In the case of parallelism across system, load balancing is obtained when
the subsystems are of the same dimension and difficulty. In the case of parallelism
across method the computations must be balanced between the processes on each
stage. The application of waveform relaxation methods allows the reduction to some
systems of algebraic equations of smaller dimension and correspondingly leads to a
greatly reduced computational effort; to achieve load balancing these new systems
must be of similar complexity.

3.8. Available prototype. The first version of EpODE (expert system for ODEs)
was build in 1997-1999 with respect to the above requirements. It was designed espe-
cially for the numerical solution of stiff ODEs and it is independent from any other
computer application. No supplementary code is generated when a new method
will be added. A large database of problems and methods was tested (roughly 100
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problems and 100 methods). The prototype is available on Win32, Linux and Unix
(free download from http://web.info.uvt.ro/ petcu/software.html). Tests have been
reported in [39] and [41].

3.9. Adapting to the new technologies. Grid computing enables the develop-
ment of large scientific applications on an international scale. Grid-aware applica-
tions make use of coupled computational resources that cannot be replicated at a
single site. Solving larger problems is possible by pooling together resources that
could not be coupled easily before grids. In this context current international efforts
are dedicated to build computational grids devoted to solve problems described in
mathematical terms.

Computational grids are relying on a pool of mathematical software codes and
on a collection of personal computers and dedicated clusters of workstations. To
adapt an existing tool to a computational grid, grid-enabled version of the available
software must be written. EpODE can be wrapped to be seen by a grid user as
grid software resource (a wrapper is needed). On other hand, in order to construct
a grid-aware version of EpODE, we must add to it at least the following facilities
like multiple threads for different external solvers, search for hardware resources
and code transfer, links to proprietary and free codes. Since different components
of EpODE can be used not only for solving initial value problems, the codes are
rewritten now in Java instead C++, allowing an easier use of Java CoG and Globus
toolkit. The parallel ODE solvers from EpODE have been designed for dedicated
homogeneous cluster environments. In order to use heterogeneous grid resources
a dynamic load balancing scheme must be added. Moreover, the message passing
interface PVM must be replaced with the MPICH-G which works both on cluster
and grid environments. A grid-aware version of EpODE is now under construction.

4. Conclusions

A survey was proposed based on the analysis of current ODE software (com-
puter algebra systems, dedicated problem solving environments, specialized free or
commercial packages) with a special attention to stiff and large ODE systems and
parallel solvers. Current requirements on ODE solvers are identified and an ODE
expert architecture is proposed. New technologies like grid computing must be
taken in consideration when a new generation of ODE solvers will emerge.
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