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The integer part of some terms of a sequence of
real numbers

Dumitru Acu

Abstract. In this paper we generalize some problems concerning the integer part of some

terms of particular sequences of real numbers.

1. Preliminaries

In [2] Chapter 2, paragraph 2.1, are presented the following problems.
3. Compute the integer part of the number:

An =
4

√
78 + 4

√
78 + ... + 4

√
78,

where there are n radicals.
4. One consider the numbers:

an =

√
6 +

√
6 + ... +

√
6;

bn =
3

√
6 +

3
√

6 + ... + 3
√

6;

cn =
4

√
14 +

4
√

14 + ... + 4
√

14,

every number contains n radicals. Evaluate [an], [bn], [cn].
5. Compute [An], where

An =

√
1981 +

√
1981 + ... +

√
1981,

(An contains n radicals).
11.1 Compute the integer part of the number

an =

√
1995 +

√
1995 + ... +

√
1995,

where there are n radicals.
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2. Main result

These source problems ([1]), suggest the study of a general problem:

Let a and k be given positive integers and let be given the sequence of real numbers
(x(k)

n (a)) defined by

x(k)
n (a) =

k

√
a + k

√
a + ... + k

√
a,

where x
(k)
n (a) contains n radicals.

We want to find [x(k)
n (a)], where [x] represents the integer part of the real number

x.
We denote by p ∈ N∗ the integer part of the number k

√
a. It results that

p ≤ k
√

a < p + 1, pk ≤ a < (p + 1)k

and
[x(k)

1 (a)] = [ k
√

a] = p.

We consider two cases.

The case 2.1 pk ≤ a ≤ (p + 1)k − p− 1.
We prove by mathematical induction that

p ≤ x(k)
n (a) < p + 1 (1)

for all positive integers n ≥ 1.
For n = 1 the inequalities (1) are obvious. Now, we consider n = 2. We have

x
(k)
2 (a) = k

√
a + k

√
a < k

√
(p + 1)k − p− 1 + p + 1 = p + 1

and

x
(k)
2 (a) ≥ k

√
pk + p > k

√
pk = p.

Therefore, we can write

p < x
(k)
2 (a) < p + 1.

Assuming that the inequalities (1) are true for n, we have

x
(k)
n+1(a) =

k

√
a + x

(k)
n (a) < k

√
(p + 1)k − p− 1 + p + 1 = p + 1

and

x
(k)
n+1(a) =

k

√
a + x

(k)
n ≥ k

√
pk + p > k

√
pk = p.

Hence the inequalities (1) are true for all integer n ≥ 1.
From (1) it results that

[x(k)
n (a)] = p if pk ≤ a ≤ (p + 1)k − p− 1
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The case 2.2. (p + 1)k − p− 1 < a < (p + 1)k.
We prove now that

p + 1 ≤ x(k)
n (a)<p + 2 (2)

for all positive integer n, n ≥ 2.
For n = 2 we have

x
(k)
2 (a) = k

√
a + k

√
a < k

√
(p + 1)k + p + 1 < p + 2

and

x
(k)
2 (a) = k

√
a + k

√
a ≥ k

√
(p + 1)k − p + p = p + 1.

Assume that the inequalities (2) hold for a certain fixed n and prove that (2)
hold for n + 1.

We have

x
(k)
n+1(a) =

k

√
a + x

(k)
n (a) < k

√
(p + 1)k + p + 2 < p + 2

and

xk
n+1(a) =

k

√
a + x

(k)
n (a) ≥ k

√
(p + 1)k − p− 1 + p + 1 = p + 1,

which was to be proved.
From the inequalities (2) we deduce that for (p + 1)k − p− 1 < a < (p + 1)k we

have [x(k)
n (a)] = p + 1 for all positive integers, n ≥ 2, where p = [ k

√
a].

Hence we proved:

Theorem 1. i) If pk ≤ a ≤ (p + 1)k − p− 1, p = [ k
√

a], then [x(k)
n (a)] = p, for all

positive integers k, k ≥ 2.
ii) If (p + 1)k − p − 1 < a < (p + 1)k, then [x(k)

1 (a)] = p and [x(k)
n (a)] = p + 1,

for all positive integers n, n ≥ 2, and all positive integers k, k ≥ 2.

3. Particular cases

3.1. k = 2 and p = 1. The natural numbers a for which [
√

a] = p = 1 are from the
interval [1, 4), that is a ∈ {1, 2, 3}. Hence (p + 1)2 − p− 1 = 2, we deduce that for
a ∈ {1, 2} we have [x2

n(a)] = 1, for all positive integers n , and for a = 3 we have
[x(2)

1 (3)] = 1 and [x2
n(3)] = 2, for all positive integers n, n ≥ 2. That is we have the

identities 
√

1 +

√
1 +

√
1 + ... +

√
1

 = 1,


√

2 +

√
2 +

√
2 + ... +

√
2

 = 1,
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
√

3 +

√
3 +

√
3 + ... +

√
3

 = 2,

where we have n radicals, n ≥ 2.

3.2. k = 2 and p = 2. The set of the natural numbers for which [
√

a] = 2 is
{4, 5, 6, 7, 8}. Because (p + 1)2 − p − 1 = 6 it results that for a ∈ {4, 5, 6} we have
[x(2)

n (a)] = 2, for all positive integers n, and for a ∈ {7, 8} we have [x(2)
1 (a)] = 2

and [x(2)
n (a)] = 3, for all integer n ≥ 3. If a = 6 we have

[

√
6 +

√
6 + ... +

√
6] = 2,

for n radicals, n ≥ 1, these are the numbers an from the problem 4, paragraph 1.

3.3. a = 1981 and k = 2. Since
√

1981 = 44, 50... it follows that p = [
√

1981] = 44.
Considering that (p + 1)2 − p− 1 = 1980 and 1981 > 1980, from ii) of the Theorem
it results that for the sequence

x(2)
n (1981) =

√
1981 +

√
1981 + ... +

√
1981,

we have [x(2)
1 (1981)] = 44 and [x(2)

n (1981)] = 45, for all positive integers n, n ≥ 2.
This particular case is the Problem 5 from the paragraph 1.

3.4. a = 1995 and k = 2. We obtain
√

1995 = 44, 66..., p = [
√

1995] = 44 and
(p + 1)2 − p− 1 = 1980. Because 1995 < 1980, it follows that for the sequence

x(2)
n (1995) =

√
1995 +

√
1995 + ... +

√
1995,

we have [x(2)
1 ] = 44 and [x(2)

n (1995)] = 45, for all positive integers n, n ≥ 2.
This particular case is the problem 11.1 mentioned in the paragraph 1.

3.5. a = 78 and k = 4. We have p = [ 4
√

78] = 2.
In view of (p + 1)2 − p− 1 = 81− 3 = 78 and 16 < 78 ≤ 78 we find by using the

case i) from the Theorem that for the sequence

x(4)
n (78) =

4

√
78 +

4
√

78 + ... + 4
√

78

we have [x(4)
n (78)] = 2, for all integer n ≥ 1. This particular case is the problem 3,

mentioned in the paragraph 1.

3.6. a = 6 and k = 3. Then p = [ 3
√

6] = 1 and (p + 1)3 − p − 1 = 6. Since
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1 < 6 ≤ 6 we are in the case i) from the Theorem and it results that for the sequence

x(3)
n (6) =

3

√
6 +

3
√

6 + ... + 3
√

6

we have [x(3)
n (6)] = 1, for every integer n ≥ 1.

This particular case is the sequence bn from the problem 4 mentioned in
paragraph 1.

3.7. a = 14 and k = 4. We obtain p = [ 4
√

14] = 1, (p + 1)4 − p − 1 = 14
and 1 < 14 ≤ 14. We are in the case i) from the Theorem and it follows that for
the sequence

x(4)
n (14) =

4

√
14 +

4
√

14 + ... + 4
√

14

we have [x(4)
n (14)] = 1, for all integer n ≥ 1.

This particular case is the sequence cn from the problem 4, paragraph 1.

3.8. a = 15 and k = 4. Then p = [ 4
√

15] = 2, (p + 1)4 − p − 1 = 14 and
a = 15 > 14. We have the case ii) from the Theorem and it results that for the
sequence

x(4)
n (15) =

4

√
15 +

4
√

15 + ... + 4
√

15

we obtain [x(4)
n (15)] = 1 and [x(4)

n (15)] = 2 for any integer n ≥ 2.
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University ”Lucian Blaga” Sibiu

Department of Mathematics
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