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Mathematical induction: Notes for teacher
(Part 1)

Michael Lambrou

Abstract. This set of notes is aimed at the teacher of the gifted student who wishes to be

exposed to less routine techniques of induction than normally found in a standard school textbook.

The notes that follow are on Mathematical Induction for a classroom of students
with a more sophisticated inclination to mathematics than the standard require-
ment. The article is in two parts. The first includes a historical introduction and
the basics of Induction, but the level of mathematics is more or less routine. The
second part includes variations of Induction. Here the problems are slightly harder,
yet a particular care was taken to include only tractable exercises. Solutions to all
problems (except for the standard ones in the first exercise) are given at the end of
each part, and are mostly short and elegant.

1. Historical Introduction

In philosophy and in the applied sciences the term induction is used to describe
the process of drawing general conclusions from particular cases. For Mathematics,
on the other hand, such conclusions should only be drawn with caution, because
mathematics is a demonstrative science and any statement must be accompanied
by a rigorous proof. For example John Wallis (1616-1703) was criticized strongly by
his contemporaries because in his Arithmetica Infinitorum (1656), after inspecting
the six relations,

0 + 1
1 + 1

=
1
3

+
1
6

,
0 + 1 + 4
4 + 4 + 4

=
1
3

+
1
12

,

0 + 1 + 4 + 9
9 + 9 + 9 + 9

=
1
3

+
1
18

,
0 + 1 + 4 + 9 + 16

16 + 16 + 16 + 16 + 16
=

1
3

+
1
24

,

0 + 1 + 4 + 9 + 16 + 25
25 + 25 + 25 + 25 + 25 + 25

=
1
3
+

1
30

,
0 + 1 + 4 + 9 + 16 + 25 + 36

36 + 36 + 36 + 36 + 36 + 36 + 36
=

1
3
+

1
36

stated without any further qualification that the general rule, namely,

02 + 12 + 22 + ... + n2
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,

follows “per modum inductionis”.
Although Wallis’ claim is correct, amounting to the familiar statement (known

to Archimedes) that
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12 +22 + . . .+ n2 =
(

1
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)
n2(n + 1) =

1
6
n(n + 1)(2n + 1),

it nevertheless needed proof.
One way to deal with this problem is with the so-called method of complete or

mathematical induction. This topic, sometimes called just induction, is the subject
discussed below.

Induction is a simple yet versatile and powerful procedure for proving statements
about integers. It has been used effectively as a demonstrative tool in almost the en-
tire spectrum of mathematics: for example in as diverse fields as algebra, geometry,
trigonometry, analysis, combinatorics, graph theory and many others.

The principle of induction has a long history in mathematics. For a start, al-
though the principle itself is not explicitly stated in any ancient Greek text, there
are several places that contain precursors of it. Indeed, some historians see the fol-
lowing passage from Plato’s (427-347 BC) dialogue Parmenides (147a7-c3) as the
earliest use of an inductive argument:

Then they must be two, at least, if there is to be contact. - They must. - And if
to the two terms a third be added in immediate succession, they will be three, while
the contacts [will be] two. - Yes. - And thus, one [term] being continually added,
one contact also is added, and it follows that the contacts are one less than the
number of terms. For the whole successive number [of terms] exceeds the number
of all the contacts as much as the first two exceed the contacts, for being greater in
number than the contacts: for afterwards, when an additional term is added, also
one contact to the contacts [is added]. - Right. - Then whatever the number of
terms, the contacts are always one less. -True.

The previous passage is from a philosophical text. There are, however, several
ancient mathematical texts that also contain quasi-inductive arguments. For in-
stance Euclid (∼ 330− ∼ 265BC) in his Elements employs one to show that every
integer is a product of primes.

An argument closer to the modern version of induction is in Pappus’ (∼290-∼350
AD) Collectio. There the following geometric theorem is proved.

Let AB be a segment and C a point on it. Consider on the same side of AB
three semi-circles with diameters AB,AC and CB, respectively. Now construct
circles Cn as follows: C1 touches the three semi-circles; Cn+1 touches Cn and the
semicircles on AB and AC. If dn denotes the diameter of Cn and hn the distance
of its centre from AB, then dn = nhn.

The way Pappus proves the theorem is to show geometrically the recurrence
relation hn+1/dn+1 = (hn + dn)/dn. Next, he invokes a result of Archimedes (287
- 212 BC) from his Book of Lemma’s (Proposition 6) which states that conclusion
of the theorem above is true for the case n = 1. Coupling this with the recurrence
relation, he is able to conclude the case for the general n.

After the decline of Greek mathematics, the Muses flew to the Islamic world.
Although induction is not explicitly stated in the works of mathematicians in the
Arab world, there are authors who reasoned using a preliminary form of it. For
example al - Karaji (953-1029) in his al-Fakhri states, among others, the binomial
theorem and describes the so called Pascal triangle after observing a pattern from
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a few initial cases (usually 5). He also knew the formula 13 + 23 + ... + n3 =
(1 + 2 + ... + n)2. About a century later we find similar traces of induction in al-
Samawal’s (∼1130-∼1180) book al-Bahir, where the identity 12 +22 +32 + ...+n2 =
n(n + 1)(2n + 1)/6 appears.

The first explicit inductive argument in a western source is in the book Arith-
meticorum Libri Duo (1575) of Francesco Maurolyco (1495–1575). For instance it
is shown inductively in this text that the sum of the first n odd integers is equal to
the nth square number. In symbols, 1 + 3 + 5 + . . . + (2n − 1) = n2, a fact known
to the ancient Pythagoreans.

Another early reference to induction is in the Traité du Triangle Arithmetique of
Blaise Pascal (1623–1662), where the pattern known to-day as ’Pascal’s Triangle’ is
discussed. There the author shows that the binomial coefficients nCk satisfy nCk :
nCk+1 = (k + 1) : (n− k), for all n and k with 0 ≤ k < n. Here the passage from n
to n + 1 uses nCr =n−1 Cr−1 +n−1 Cr.

All the above authors used an intuitive idea about the concept of natural number.
This is sufficient for our purposes here, and below we shall follow suit. A character-
istic of modern mathematics, however, especially from the late 19th century, was to
develop the theory axiomatically. In particular, this was accomplished for the nat-
ural numbers by Giuseppe Peano (1858-1932) who published the so called ’Peano’s
axioms’ in 1889, in a pamphlet entitled Arithmetices principia, nova methodo ex-
posita. The exact procedure need not concern us here. We only mention that one
of the axioms was so designed as to incorporate induction as a method of proof. In
other words, the intuitive way to deal with induction below, is actually a legitimate
technique. We refer to standard books on abstract algebra for the development of
Natural Numbers via the axioms of Peano.

In what follows, the theory is presented in short sections, each with its own
exercises. These are rather easy especially at the beginning, but those in the last
paragraph are more challenging. Several questions can be solved by other means,
but the idea is to use induction in all of them.

2. Basics

The principle of mathematical induction is a method of proving statements con-
cerning integers. For example consider the statement 12 + 22 + 32 + ... + n2 =
n(n+1)(2n+1)/6, which we denote by P (n). One can easily verify this for various
n, for instance 12 = 1 = 1.(1+1)(2.1+1)/6, 12 +22 = 5 = 2.(2+1)(2.2+1)/6, 12 +
22 + 32 = 14 = 3.(3 + 1)(2.3 + 1)/6 and so forth. Here we verified the statement
for the cases n = 1, n = 2 and n = 3 (in a while we shall see that the last two can
be dispensed with) but assume that we have verified it up to the particular value
n = k. The last statement means that we are certain that for this particular value
k we have 12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6. But is the formula true for
the case of the next integer n = k + 1? We claim that it is. To see this, making use
of the fact that we have 12 + 22 + 32 + ... + k2 = k(k + 1)(2k + 1)/6, we argue

12 +22 +32 + ...+k2 +(k+1)2 = k(k+1)(2k+1)/6+(k+1)2 = (by assumption)
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= (k + 1)[k(2k + 1) + 6(k + 1)]/6

= (k + 1)(k + 2)(2k + 3)/6,

and this last is precisely the original claim for n = k + 1.
Let us recapitulate: We needed to prove the statement P (n) is true for all integers

n ≥ 1. We first verified it for n = 1; then, assuming that it is true for n = k, we
verified it for n = k + 1. In other words, reiterating our result, the validity of P (1)
implies that of P (2); the validity of P (2) implies that of P (3); the validity of P (3)
implies that of P (4), and so on for all integers n ≥ 1.

The schema we use in the proof can be summarized symbolically as

P (1)
P (k) ⇒ P (k + 1)

P (n) true for all n ∈ N

The step P (k) ⇒ P (k+1) in the proof is called the inductive step; the assumption
that P (k) is true, is called the inductive hypothesis.

Here is another example.
Example 2.1 (Bernoulli’s inequality). Show that if a > −1 then (1+a)n ≥ 1+na

for all n ∈ N.
Solution. For n = 1 it is a triviality (in fact we get an equality). Assume now

validity of the inequality for n = k; that is, assume (1 + a)k ≥ 1 + ka. This is our
inductive hypothesis, and we are to show (1 + a)k+1 ≥ 1 + (k + 1)a. We have

(1 + a)k+1 = (1 + a)(1 + a)k ≥ (1 + a)(1 + ka) =

= 1 + (k + 1)a + ka2 ≥ 1 + (k + 1)a.

This, by the principle of induction, completes the proof. �
As a final remark, the above examples start from n = 1. This need not be always

the case and there are cases (see exercises) that induction may start at any another
integer. The situation is self explanatory and there is no need to qualify it any
further.

The next exercises require the verification of a variety of formulae. None of these
should present the reader with any difficulty and the exercises are there only to
familiarize him/her with the idea of induction. In fact, the reader should try to do
several of these exercises mentally.

Exercise 2.1 (routine). Show inductively that each of the following formulae is
valid for all positive integers n.

a) 13 + 23 + 33 + . . . + n3 = n2(n + 1)2/4,
b) 14 + 24 + 34 + . . . + n4 = n(n + 1)(2n + 1)(3n2 + 3n− 1)/30,
c) 15 + 25 + 35 + . . . + n5 = n2(n + 1)2(2n2 + 2n− 1)/12,

d)
1

1.2
+

1
2.3

+
1

3.4
+ ... +

1
n(n + 1)

=
n

n + 1
,

e)
1

1.2.3
+

1
2.3.4

+ ... +
1

n(n + 1)(n + 2)
=

n(n + 3)
4(n + 1)(n + 2)

,
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f)
3

1222
+

5
2232

+
7

3242
+ ... +

2n + 1
n2(n + 1)2

=
n(n + 2)
(n + 1)2

,

g) (n + 1)(n + 2)...(2n− 1)(2n) = 2n.1.3.5....(2n− 1),

h)
n∑

k=1

(2k)!
k!2k =

n∑
k=1

1 · 3 · 5 · ... · (2k − 1),

i) 1 − x

1!
+

x(x− 1)
2!

− ... + (−1)n x(x− 1)...(x− n + 1)
n!

=

(−1)n (x− 1)(x− 2)...(x− n)
n!

,

j) (cosx)(cos2x)(cos4x)(cos8x)...(cos2n−1x) =
sin 2nx

2n sinx

(for x ∈ R with sinx 6= 0),

k)
n∑

k=1

cos(2k − 1)x =
sin 2nx

2 sinx
(for x ∈ R with sinx 6= 0),

l)

√
2 +

√
2 + ... +

√
2 +

√
2︸ ︷︷ ︸

n radicals

= 2 cos
π

2n+1
,

m) (15 + 25 + 35 + . . . + n5) + (17 + 27 + 37 + . . . + n7) = 2(1 + 2 + 3 + . . . + n)4,

n)
1

n + 1
+

1
n + 2

+ ... +
1
2n

= 1− 1
2

+
1
3
− 1

4
+ ... +

1
2n− 1

− 1
2n

.

Exercise 2.2. If a sequence (an) satisfies
a) an+1 = 2an + 1(n ∈ N), show that an + 1 = 2n−1(a1 + 1).
b) a1 = 0 and an+1 = (1− x)an + nx(n ∈ N), where x 6= 0, show that

an+1 = [nx− 1 + (1− x)n]/x.

Exercise 2.3. Let (an) be a given sequence. Define new sequences
(xn), (yn) by x1 = 1, x2 = a1, y1 = 0, y2 = 1 and, for n ≥ 3, xn = anxn−1 +
xn−2, yn = anyn−1 + yn−2. Show that

xn+1yn − xnyn+1 = (−1)n.

Exercise 2.4. If each of a1, a2, . . . , an, is a sum of two perfect squares, show
that the same is true for their product.

Exercise 2.5. Show that 2n5/5 + n4/2 − 2n3/3 − 7n/30 is an integer for all
n ∈ N.

Exercise 2.6. Show that if x 6= y, then the polynomial x− y divides xn − yn.
Exercise 2.7. Show that a convex n-gon has

1/2n(n− 3) diagonals (n ≥ 3).

Exercise 2.8. Prove the binomial theorem inductively. Namely, show that

(a + b)n =
n∑

k=0

nCkakbn−k

where nCk =
n!

k!(n− k)!
. You may use n+1Ck =n Ck−1 +n Ck(1 ≤ k ≤ n). (The

binomial theorem was known to the Arabs. They did not have a complete proof, but
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after verifying it for few small n stated the general form using in a quasi-inductive
argument. Later the theorem was rediscovered by Isaac Newton (1654-1705), who
included it in his celebrated Philosophiae Naturalis Principia Mathematica (1687).
For the proof he used a combinatorial argument. The first inductive proof was by
Jakob Bernoulli(1654-1705), published posthumouslyin his Ars Conjectandi (1713)).

Exercise 2.9. It is easy to see that the number (2 +
√

3)n can be written in the
form an + bn

√
3. Show a) inductively and b) without induction, that the numbers

an, bn satisfy a2
n − 3b2

n = 1 (n ∈ N).
Exercise 2.10. Show that the number 22n − 1 is divisible by at least n distinct

primes.
Exercise 2.11. If Fn = a2n

+1 is the nth Fermat number (n = 0, 1, 2, . . .), show
that

Fn − 2 = (a− 1)F0F1 . . . Fn−1(n ∈ N).
Exercise 2.12. Prove by induction that n! > 3n for n ≥ 7.
Exercise 2.13. If a0, a1, a2, . . .is a sequence of positive numbers satisfying a0 = 1

and
a2

n+1 > anan+2(n = 0, 1, 2, . . .),
show that

a1 > a
1/2
2 > a

1/3
3 > a

1/4
4 > ... > a

1/n
n > ....

Exercise 2.14. A result of Ramanujan (whose proof is beyond the scope of this
article) states that √√√√

1 + 2

√
1 + 3

√
1 + 4

√
1 + 5

√
1 + ... = 3.

Use Ramanujan’s result to show that for all n ∈ N,√√√√
1 + n

√
1 + (n + 1)

√
1 + (n + 2)

√
1 + (n + 3)

√
1 + ... = n + 1.

3. Patterns

One of the disadvantages of the method of induction, as reflected by some of
the examples portrayed above (especially in Exercise 1), is that one needs to know
beforehand the formula describing the situation considered. It is only then that one
may embark on proving it. But this need for foreknowledge can often be remedied by
detecting patterns after judicial evaluation of special cases. In practice it means that
one needs to conjecture the underlying rule, and then verify whether it is, indeed,
correct. In other words, we have to do some guessing. The following examples
elucidate this point.

Example 3.1. For what values on n is 2n + 1 a multiple of 3?
Solution. By checking small values of the integer n one realizes that 2n + 1 is a

multiple of 3 for n equals 1, 3, 5 and 7, but fails to be so when n equals 2, 4, 6 or 8.
It seems reasonable to guess that 2n+1 a multiple of 3 precisely when n is odd. This
turns out to be correct, and the following inductive argument can be used (how?) to
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verify the claim: Write an = 2n+1. Then an+2 = 2n+2+1 = 4(2n+1)−3 = 4an−3,
which is a multiple of 3 when an is. �

Example 3.2. If f(x) = 2x+1, guess a formula for the nth term of the sequence

f1 = f(x), f2 = f(f(x)), f3 = f(f(f(x))), f4 = f(f(f(f(x)))), . . .

and then prove it by induction.
Solution. By direct calculation one verifies that f2 = 4x + 1, f3 = 8x + 7, f4 =

16x + 15 and so on. If these examples are not adequate to guess the pattern, the
reader should continue with further iterations of f. Sooner or later one suspects that
fn = 2nx+2n−1. It turns out that the guess is correct, as the reader should supply
the missing portions of the following inductive argument that settles the matter:

fn+1 = f(fn(x)) = f(2nx + 2n − 1) = 2(2nx + 2n − 1) + 1 = 2n+1x + 2n+1 − 1.

�
Example 3.3. By considering the numerical sequence

2− 1, 3− (2− 1), 4− (3− (2− 1)), 5− (4− (3− (2− 1))), . . .

guess and then prove inductively the numerical value of

n− (n− 1− (n− 2− (n− 3− (. . .− (3− (2− 1))...))).
Solution. The first few expressions simplify to 1, 2, 2, 3, 3 and 4 respectively.

One may guess that the general pattern is

n− (n− 1− (n− 2− (n− 3− (. . .− (3− (2− 1))...))) =
{

n/2 if n is even
(n + 1)/2 if n is even

This is easy to verify inductively and the details are left to the reader, who should
consider separately the cases n even and n odd. �

A word of caution is necessary here: No matter how many initial cases we check
in a particular situation, a pattern that seems to emerge is not sufficient to draw
conclusions. A proof must always follow our guess and failure to devise such a proof
may indicate that our conjecture is, perhaps, wrong. There are several examples
showing that even first rate mathematicians were deceived by a few special cases.
The great Fermat, for example, after observing that

220
+ 1 = 3, 221

+ 1 = 5, 222
+ 1 = 17, 223

+ 1 = 257

and
224

+ 1 = 65537
are prime numbers, thought that 22n

+ 1 is a prime for each n. This turned out to
be false, and the first counterexample was given by Euler who found that 225

+ 1 =
641× 6700417.

Sometimes the first counterexample to what might appear to be a pattern is very
far away. For instance, the numbers n17 + 9 and (n + 1)17 + 9 are relatively prime
for n = 1, 2, 3, ... successively, and for a very long time after that. But is this always
the case? No, and the first counterexample is for

n = 8424432925592889329288197322308900672459420460792433.
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There are two delightful articles by Richard Guy, entitled The Strong Law of
Small Numbers (American Mathematical Monthly, (1988) 697-711) and The Second
Strong Law of Small Numbers (Mathematics Magazine, 63 (1990) 3 - 20) with
numerous examples of sequences that seem to follow a pattern. But in some cases
the reality is, against all intuition, very different. It is worth also looking at the
web page

http:// primes.utm.edu/glossary/page.php?sort=LawOfSmall

where the previous example appears.
Here are some exercises along the above lines, where the reader is invited either

(i) to discover a pattern and then prove his/her hypothesis correct, or (ii) to find a
counterexample that contravenes the pattern that appears at first sight.

Exercise 3.1. After guessing an appropriate formula by testing a few first values
of n, use an inductive argument to find the following sums.

a) 12 − 22 + 32 − . . . + (−1)n−1n2,
b) 1 · (1!) + 2 · (2!) + 3 · (3!) + . . . + n · (n!),
c) n2 − [(n− 1)2 − [(n− 2)2 − [(n− 3)2 − [. . .− [32 − (22 − 12)]...]]]],

1
x(x + 1)

+
1

(x + 1)(x + 2)
+

1
(x + 2)(x + 3)

+ ... +
1

(x + n− 1)(x + n)
.

Exercise 3.2. It is given that the sum 16 + 26 + 36 + . . . + n6 can be simplified
in the form

n(n + 1)(2n + 1)(An4 + Bn3 − 3n + 1)/42,

where A and B are constants independent of n. Guess appropriate values of A and
B and then verify that they lead to a valid formula.

Exercise 3.3. If (pn) is the sequence of primes starting from p1 = 2, show that
the sequence of numbers p1 + 1, p1p2 + 1, p1p2p3 + 1, ..., p1p2p3...pn + 1, used by
Euclid in a proof in his Elements, consists of prime numbers for n = 1, 2, 3, 4, 5 but
not for n = 6.

Exercise 3.4. Given n points on the circumference of a circle, where n is succes-
sively 1, 2, 3, 4, ..., draw (in separate figures) all chords joining them. For this make
sure that the points are ”in general position” in the sense that no three chords are
concurrent. Now, count the regions into which each circle is partitioned by the
chords. You will find that they are, successively 1, 2, 4, 8, 16, ... What pattern seems
to emerge? Is the next answer 32?. Show that it is not!

Exercise 3.5. Guess the general term of the sequence (an) if a0 = 1, an = 2 and
for n ≥ 1, an+1 =

√
an + 6√an−1.

Exercise 3.6. Guess the general term of the sequence (an) if a0 = 1, and for

n ≥ 1 we have
√

a1 +
√

a2 + ... +
√

an =
1
2
(n + 1)

√
an.

4. Divisibility

The method of induction can be applied to an abundance of situations, not just
proving formulae as, perhaps, most of the above examples suggest. In what follows
we shall see some of these different circumstances. We start with a fairly easy
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situation, the case of divisibility of integers, of which we have already seen some
exercises in §2. We shall use the notation a|b to signify that an integer a divides,
or is a factor of, an integer b.

Example 4.1. Show that for each positive integer n we have 9|52n + 3n − 1;
that is, 9 divides the number 52n + 3n− 1.

Solution. Let an = 52n+3n−1. It is clear that a1 = 27 is divisible by 9. Assume
now that for n = k, the number an is divisible by 9, that is 52k + 3k − 1 = 9M for
some integer M . We have to show that ak+1 = 52(k+1)+3(k+1)−1 = 25.52k+3k+2
is also divisible by 9. The idea is to somehow use our inductive hypothesis, and this
done as follows:

ak+1 = 25.52k + 3k + 2 = 25(52k + 3k − 1)− 72n + 27

= 25.9M − 9(8n− 3) (by the inductive hypothesis)

= a multiple of 9.

Therefore by the principle of induction 9|an for all positive integers n. �
Exercise 4.1. Redo the previous example more elegantly by considering ak+1−

25ak in place of ak+1 alone.
Example 4.2. Show that all numbers in the sequence 1003, 10013, 100113,

1001113,. . . and so on, are divisible by 17.
Solution. We have 1003 = 17 × 59, moreover, the difference between two con-

secutive numbers of the sequence is of the form 9010 . . . 0, which is also a multiple
of 17 (note901 = 17 × 53). With this information the reader should be able to fill
the details of a full inductive argument. �

Exercise 4.2. Show that for each n∈N, 72n – 48n – 1 is a multiple of 2304.
Exercise 4.3. Show that for each n∈N, 3.5 2n+1 + 23n+1 is a multiple of 17.
Exercise 4.4. Show that the sum of cubes of any three consecutive integers is

divisible by 9.

5. Inequalities

We have seen an inequality, Bernoulli’s inequality (Example 2.1), that depends
on a natural number n. This particular one was proved using induction and, sure
enough, many inequalities that depend on n can be dealt with by induction. For
instance the following generalization of Bernoulli’s inequality can be shown by a
minor modification of the proof given above.

Example 5.1 (Weierstrass inequality). If an ≥ −1(n ∈ N), then

n∏
k=1

(1 + ak) ≥ 1 +
n∑

k=1

ak

Proof. As mentioned, the proof follows closely that of Bernoulli’s inequality given
above, and the details are left to the reader: For the inductive step then one only
needs to multiply both sides by the positive number (1 + an+1).

The rest are simple. �
There are several inequalities in the text and in the exercises of what follows,

but here is a preliminary set.
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Exercise 5.1. Prove by induction that a) 2n > n2 for n ≥ 5, b) 2n > n3 for
n ≥ 10.

Exercise 5.2. Prove by induction that 2!4! . . . (2n)! > [(n + 1)!]n(n ∈ N).
Exercise 5.3. Prove that (2n)!(n + 1) > 4n(n!)2 for all n > 1.
Exercise 5.4. Prove for all integers n > 1 the inequality

1√
1

+
1√
2

+ ... +
1√
n

> 2
√

n + 1− 2.

Exercise 5.5. Prove that if ak satisfies 0 < ak < 1 for 1 ≤ k ≤ n, then

(1− a1)(1− a2) . . . (1− an) > 1− (a1 + a2 + . . . + an).
Exercise 5.6. Prove that if ak satisfies 0 ≤ ak ≤ 1 for 1 ≤ k ≤ n, then

2n−1(1 + a1a2 . . . an) ≥ (1 + a1)(1 + a2) . . . (1 + an).
Solutions to the exercises.
2.1) Routine
2.2) The inductive step uses ak+1 + 1 = 2ak + 2 = 2(ak + 1) = 2k(a1 + 1). The

second case is just as routine.
2.3) Use xn+1yn − xnyn+1 = (an+1xn + xn−1)yn − xn(an+1yn + yn−1) =

−(xnyn−1 − xn−1yn).
2.4) Use (x2 + y2)(u2 + v2) = (xu− yv)2 + (xv + yu)2.
2.5) If P (k) = 2k5/5 + k4/2 − 2k3/3 − 7k/30 then, expanding, P (k + 1) =

P (k) + integer.
2.6) Use xn+1 − yn+1 = x(xn − yn) + yn(x− y).
2.7) It is easy to see that an addition of new vertex to an k-gon increases the

number of diagonals by k − 1 and

1/2k(k − 3) + k − 1 = (k + 1)(k − 2).

2.8) This is a standard textbook proof.
2.9) a) Use (2 +

√
3)n+1 = (an + bn

√
3)(2 +

√
3) = (2an + 3bn) + (an + 2bn)

√
3

so that an+1 = 2an + 3bn and bn+1 = an + 2bn. It is easy now to show that
a2

n+1 − 3b2
n+1 = 1. b) It is easy to see by the binomial theorem that (2 +

√
3)n =

an − bn

√
3. Now use (2 +

√
3)n(2−

√
3)n = (4− 3)n = 1.

2.10) Use 22n+1 − 1 = (22n − 1)(22n

+ 1).Note that 22n − 1 and 22n

+ 1 do not
have common prime divisors as they are both odd numbers differing by 2.

2.11) The case n = 1 is clear. From the hypothesis Fk−2 = (a−1)F0F1 . . . Fk−1

we have

Fk+1 − 2 = a2k+1
− 1 = (a2k

− 1)(a2k

+ 1) = (Fk − 2)Fk = (a− 1)F0F1 . . . Fk−1Fk.

2.12) 7! = 5040 > 2187 = 37.If k! > 3k(wherek≥ 7) then (k+1)! = (k+1)(k!) >
(k + 1).3k ≥ 8.3k > 3k+1.

2.13) The condition a2
1 > a0a2 = a2 gives the first inequality. Assuming

a
1/(k−1)
k−1 > a

1/k
k we have a2

k > ak−1ak+1 > (ak)(k−1)/kak+1, from which the re-
sult easily follows.

2.14) The case n = 1 is Ramanujan’s result.
For the inductive step, let
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√
1 + (k + 1)

√
1 + (k + 2)

√
1 + (k + 3)

√
1 + ... = k + 1.

Now square both sides, subtract 1 and divide by k. It gives the next case.
3.1) a)(−1)n(1 + 2 + ... + n) = (−1)nn(n + 1)/2

b) (n + 1)!
c) 1 + 2 + ... + n = n(n + 1)/2
d) n/[x(x + n)]

3.2) A = 3, B = 6.
3.3) Initially we find the primes 3, 7, 31, 211, 2311 but for n = 6 the result is

30031 = 59× 509.
3.4) The next number, corresponding to n = 6, is 31.
3.5) We find a2 = 23/2, a3 = 27/4, a4 = 215/8 etc. One may guess and then easily

verify by induction that an = 2(2n−1)/2n−1
.

3.6) It is easy to verify that a2 = 4, a3 = 9 etc. The guess an = n2 is correct
and can be verified by induction. A quick way to do this is to verify first that
√

an+1 =
n + 1

n

√
an.

4.1) This essentially the previous example: ak+1 − 25ak = −9(8k − 3).
4.2) If an = 72n − 48n− 1, for the inductive step consider ak+1 − 49ak = 2304k.
4.3) If an = 3.52n+1 +23n+1, the inductive step can be sorted by writing ak+1−

25ak = −17 · 22n+1

Alternatively, we could consider ak+1 − 8ak = 3 · 17 · 52k+1.
4.4) If ak = k3+(k+1)3+(k+2)3, then ak+1−ak = (k+3)3−k3 = 9(k2+3k+3).
5.1) a) 25 = 32 ≥ 52. If 2k > k2 (where k ≥ 5) then

2k+1 = 2.2k > 2.k2 = k2 + k2 ≥ k2 + 5k > k2 + 2k + 1 = (k + 1)2.b)210 =

= 1024 > 103.If2k > k3(where k ≥ 10) then 2k+1 =

2.2k > 2.k3 = k3 + k3 ≥ k3 + 10k2 ≥ k3 + 3k2 + 3k + 1 = (k + 1)3.

5.2) The inductive step amounts to showing (k + 2) . . . (2k + 2) > (k + 2)k+1.
This is clearly true since each of the k + 1 terms of the left hand side is > (k + 2).

5.3) If (2k)!(k + 1) > 4k(k!)2 then

(2k + 2)!(k + 2) = (2k + 2)(2k + 1)[(2k)!(k + 1)](k + 2)/(k + 1) >

> (2k + 2)(2k + 1)4k(k!)2(k + 2)/(k + 1) =

4k+1((k + 1)!)2(2k + 1)(k + 2)/[2(k + 1)2] > 4k+1((k + 1)!)2

5.4) The inductive step amounts to showing
√

n +
1√

n + 1
>
√

n + 1, which is

routine.
5.5) The argument is a trivial adaptation of that of Example 5.1 in the text.
5.6) For the induction step assume validity of the inequality for n = m and any

sequence (ak) with 0 ≤ ak ≤ 1 for 1 ≤ k ≤ m. Let now n = m + 1 and consider a
sequence (bk) with 0 ≤ bk ≤ 1 for 1 ≤ k ≤ m + 1. Apply the inductive hypothesis
to
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a1 = b1, a2 = b2, . . . , am−1 = bm−1 and am = bmbm+1.

Thus

2m(1 + b1b2 . . . bm−1(bmbm+1)) ≥ 2(1 + b1)(1 + b2) . . . (1 + bm−1)(1 + bmbm+1).

The required result follows upon observing that

2(1 + bmbm+1) ≥ (1 + bm)(1 + bm+1)
(which is true as equivalent to the true statement (1− bm)(1− bm+1) ≥ 0. )

Apart from the books mentioned in the text, we recommend in References some
articles for further historical aspects of Induction.
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