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On the limits of some sequences of integrals

Nicolae Muşuroia

Abstract. The aim of this paper is to give two general results regarding the computation of
some particular limits of real sequences which are defined by a definite integral (Proposition 1 and

Proposition 2). Several applications are then presented.

In this article we will present a general method for calculating limits of the form:

lim
n→∞

n

1∫
0

xng (xn) f (x) dx.

Proposition 1. If f, g : [0, 1] → R are continuous functions, then:

lim
n→∞

1∫
0

g (xn) f (x) dx = g (0)

1∫
0

f (x)dx.

Proof. If at least one of the functions f or g is identically null, the conclusion is
obvious. Otherwise, let denote

M1 = max{|f(x)| /x ∈ [0, 1]},
M2 = max{|g(x)| /x ∈ [0, 1]}.

Then M1 > 0 and M2 > 0. Let ε > 0, given. We consider

α ∈ (0, 1) , α <
ε

4M1M2
.

Since g is continuous at x = 0, for any ε > 0, (∃) δ (ε) > 0 such that

|g (x)− g (0)| < ε

2M1
.

For any x ∈ [0, 1− α], we have lim
n→∞

xn = 0. So, there exists nε ∈ N for which

0 ≤ xn < δ (ε) , (∀) x ∈ [0, 1− α] , (∀) n ≥ nε.

Then:
1−α∫
0

|g (xn)− g (0)| · |f (x)| dx ≤ ε

2M1

1−α∫
0

|f (x) | dx ≤
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≤ ε

2M1

1∫
0

|f (x)| dx ≤ ε

2M1
·M1 =

ε

2
.

Using the fact that, on the other hand,

|g(xn)− g(0)| ≤ |g(xn)|+ |g(0)| ≤ 2M2,

1∫
1−α

|g (xn)− g (0)| · |f (x)| dx ≤ 2M2

1∫
1−α

|f (x)| dx ≤

≤ 2M2M1

1∫
1−α

1dx = 2M1M2 · α <
ε

2
(2)

Now, using (1) and (2), we get:∣∣∣∣∣∣
1∫

o

g (xn) f (x) dx− g (0)

1∫
0

f (x) dx

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
1∫

0

(g (xn)− g (0)) · f (x) dx

∣∣∣∣∣∣ ≤
1∫

0

|g (xn)− g (0)| · |f (x)| dx =

=

1−α∫
0

|g (xn)− g (0)| · |f (x)| dx +

1∫
1−α

|g (xn)− g (0)| · |f (x)| dx <
ε

2
+

ε

2
= ε.

This shows that

lim
n→∞

1∫
0

g (xn) f (x)dx = g (0)

1∫
0

f (x) dx.

�

Proposition 2. If f, g : [0, 1] → R are two functions such that g is continuous on
[0, 1] and f is differentiable, with f

′
continuous on [0, 1], then:

lim
n→∞

n

1∫
0

xng (xn) f (x) dx = f (1)

1∫
0

g (x) dx.

Proof. Since g continuous, we consider G:[0, 1] → R a primitive of g. Integrating
by parts, we have

n

1∫
0

xng (xn) f (x) dx =

1∫
0

(G (xn))′ · (xf (x)) dx =
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= G (xn) · xf (x)
∣∣1
0 −

1∫
0

G (xn) (xf (x))′ dx =

= G(1)f(1)−
1∫

0

G (xn) · (xf (x))′ dx. (3)

By letting n → ∞ and applying Proposition 1, for g := G and f := (xf)
′
, we

obtain:

lim
n→∞

n

1∫
0

xng (xn) f (x) dx =

= G (1) f (1)−G (0)

1∫
0

(xf (x))′ dx =

= G (1) f (1)−G (0) f (1) = f(1)[G(1)−G(0)] = f (1)

1∫
0

g (x) dx .

�

Using Proposition 1 or Proposition 2 we can now solve several related problems.

Problem 1
If f : [0, 1] → R is continuous, then:

lim
n→∞

1∫
0

xnf(x)dx = 0 [1]

Solution. Apply Proposition 1 with g(x) = x.

Problem 2
If f : [0, 1] → R is differentiable and its first derivate is continuous on [0, 1], then:

lim
n→∞

1∫
0

xnf(x)dx = f(1). [4]

Solution. We consider g(x) = 1 in Proposition 2.

Problem 3

If g : [0, 1] →Risacontinuousfunction, then : lim
n→∞

1∫
0

xng (xn) dx =
1∫
0

g (x) dx

( E. Păltănea, [3])
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Solution. We consider f(x) = 1 in Proposition 2.
Now we present some other applications.

1) If g : [0, 1] → R is a continuous function, then:

lim
n→∞

1∫
0

g (xn)
x + 1

dx = g (0) ln 2.

(A. Corduneanu, [2] )
Solution.
We consider f(x) =

1
x + 1

and apply Proposition 1.

2) If a > 0, show that

lim
n→∞

n

1∫
0

xn

a + xn
dx = ln

a + 1
a

,

where a > 0.
(O.J.-National Olimpiad, County round, 2001, partial statement)

Solution .
Consider the functions

g : [0, 1] → R, g (x) =
1

a + x
,

and
f : [0, 1] → R, f(x) = 1

and apply Proposition 2.
3) Show that

lim
n→∞

n

1∫
0

x2n

1 + x
dx =

1
4
.

(C. Moanţă, G.M. 12/1999)
Solution.
We apply Proposition 2 for f(x) =

1
x + 1

and g(x) = x.

4) Evaluate

lim
n→∞

n

1∫
0

2x2n + xn

x2n + xn + a
dx, a > 0.

(Florin Rotaru, G.M. 7/2004)
Solution
We consider

g : [0, 1] → R, g (x) =
2x + 1

x2 + x + a
and

f : [0, 1] → R, f(x) = 1.
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Under the assumption of Proposition 2, we obtain the required limit as:

ln
a + 2

a
.

5) Compute

lim
n→∞

n

π
4∫

0

tgnx + tg2nx

(1 + tgnx + tg2nx) cos2 x
dx.

(Florin Rotaru, G.M.2/2004)
Solution.
Denote tgx = t. Then

In =
∫ 1

0

tn(1 + tn)
1 + tn + t2n

dt

For g(t) =
1 + t

1 + t + t2
and f(t) = 1, by Proposition 2, we get:

lim
n→∞

In =

1∫
0

g (t) dt =
ln 3
2

+
π

6
√

3
.

6) Compute

lim
n→∞

n

1∫
0

(
2x2n + xn

)
ax

x2n + xn + a
dx, where a > 0, a 6= 1.

Solution.
Applying Proposition 2 for g(x) =

2x + 1
x2 + a

and f(x) = ax , we obtain that the

required limit is: a ln
a + 2

a
.

We invite the readers to find other interesting applications of Proposition 1 and
Proposition 2.
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