CREATIVE MATH. 14 (2005), 57 - 66

A method to determine all non-isomorphic groups of order 12

Dumitru Vălcan

Abstract. The present work gives a method to determine of all non-isomorphic groups of order 12 and gives descriptions of all these groups.

In [6] Purdea has determined all non-isomorphic groups of order $n \leq 10$, and I have determined in [9] all these groups of order $n \in \{p, q, pq, p^2, p^3\}$, where p and q are two distinct prime numbers.

In this work we will present a method to determine all non-isomorphic groups of order 12. In this context, throughout this paper by group we mean a group (denoted by G) of order 12 in multiplicative notation and we will denote: by 1 the identity (the "neutral") element of G, by $\operatorname{ord}(g)$ the order of the element $g \in G$ and by |A| the cardinal of the set A. If A is a subgroup of G then |A| is (also) the order of A.

Following the same reasoning as in [9] we will prove the main result of this paper: **Theorem:** There are 5 non-isomorphic groups of order 12.

Proof: So, let G be a group of order 12 and Z(G) his center. According to Lagrange's theorem we have the following cases:

Case I: |Z(G)| = 12. In this case G is commutative and by [3,8.4] and [5,2.2 (p. 86) and 6.1 (p. 97)] it follows that either $G = G_1 \cong \mathbb{Z}_{12} \cong \mathbb{Z}_4 \times \mathbb{Z}_3$ or $G = G_2 \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$. So, either there is an element $x \in G_1$ such that $\operatorname{ord}(x) = 12$ and $G_1 = \{1, x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}, x^{11}\}$ -for this group see Table 1, or there are $x, y, z \in G_2$ such that $\operatorname{ord}(x) = \operatorname{ord}(y) = 2$, $\operatorname{ord}(z) = 3$, xy = yx, xz = zx, yz = zy and $G_2 = \{1, x, y, z, z^2, xy, xz, xz^2, yz, yz^2, xyz, xyz^2\}$ -for this group see Table 2.

Case II: |Z(G)| = 6. Then |G/Z(G)| = 2 and since the group G/Z(G) is cyclic, by [5,2.2 (p. 143)] it follows that G is commutative-contradiction to the hypothesis. So, there is no group G of order 12 with |Z(G)| = 6.

Case III: |Z(G)| = 4. Also in this case the group G/Z(G) is cyclic and using again [5,2.2 (p. 143)] it follows that G is commutative-contradiction to the hypothesis. Therefore there is no group G of order 12 with |Z(G)| = 4.

Case IV: |Z(G)| = 3. In this case |G/Z(G)| = 4 and according to [8,5.5] the group G/Z(G) is commutative. Again by [3,8.4] and [5,2.2 (p. 86) and 6.1 (p. 97)] it follows that either $G/Z(G) \cong \mathbb{Z}_4$ or $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Since the group \mathbb{Z}_4 is cyclic, it follows that only the second possibility holds.

Received: 10.02.2005. In revised form: 20.05.2005.

²⁰⁰⁰ Mathematics Subject Classification. 20A05, 20A10, 20B05, 20B30, 20B35, 20D20, 20E32, 20K10, 20K25, 20K27.

Key words and phrases. Finite groups, subgroups, normal subgroups, the center of group, table of group.

Therefore $G/Z(G) = \{Z(G), xZ(G), yZ(G), xyZ(G)\}$ and $x^2 \in Z(G), y^2 \in$ Z(G), xyZ(G) = yxZ(G). Since Z(G) is a cyclic subgroup of order 3 of G assume $Z(G) = \{1, a, a^2\}$, with $a \in G$. Hence $G = \langle x, y, a \rangle$. If xy = yx then G is commutative, which is impossible. So, $xy \neq yx$ and there is an element $b \in \{a, a^2\}$ such that yx = xyb and $xy = yxb^2$. Now we distinguish the following subcases: 1) $x^2 = y^2 = 1$. Then $(yx)^2 = yxyx = y(xy)x = y(yxb^2)x = y^2x^2b^2 = b^2$

and $(xy)^2 = xyxy = x(yx)y = x(xyb)y = x^2y^2b = b$. On the other hand, $(yx)^2 = x^2y^2b = b$. $yxyx = (xyb)(xyb) = (xy)^2b^2 = b \cdot b^2 = 1$. It follows that b = 1-contradiction to the hypothesis.

2) $x^2 = 1$ and $y^2 = c \in \{a, a^2\}$. Then $(yx)^2 = yxyx = y(xy)x = y(yxb^2)x = y(yxb^2$ $y^{2}x^{2}b^{2} = b^{2}c$ and $(xy)^{2} = xyxy = x(yx)y = x(xyb)y = x^{2}y^{2}b = bc$. On the other hand, $(yx)^2 = yxyx = (xyb)(xyb) = (xy)^2b^2 = bcb^2 = c$. It follows that $b^2 = 1$ -contradiction to the hypothesis (b is an element of order 3).

3) $x^2 = a$ and $y^2 = a^2$. Then $(yx)^2 = yxyx = y(xy)x = y(yxb^2)x = y^2x^2b^2 = a^2ab^2 = b^2$ and $(xy)^2 = xyxy = x(yx)y = x(xyb)y = x^2y^2b = b$. On the other hand, $(yx)^2 = yxyx = (xyb)(xyb) = (xy)^2b^2 = bb^2 = 1$. It follows that $b^2 = 1$ contradiction to the hypothesis.

4) $x^2 = y^2 = c \in \{a, a^2\}$. Then $(yx)^2 = yxyx = y(xy)x = y(yxb^2)x = y(yxb^2)x$ $y^{2}x^{2}b^{2} = b^{2}c^{2}$ and $(xy)^{2} = xyxy = x(yx)y = x(xyb)y = x^{2}y^{2}b = bc^{2}$. On the other hand, $(yx)^2 = yxyx = (xyb)(xyb) = (xy)^2b^2 = bc^2b^2 = c^2$. It follows that $b^2 = 1$ -contradiction to the hypothesis.

So there is no group G of order 12 with |Z(G)| = 3.

Case V: |Z(G)| = 2. Then |G/Z(G)| = 6 and according to [9,4.2] either $G/Z(G) \cong \mathbb{Z}_6$ or $G/Z(G) \cong D_3$, where D_3 is the dihedral group of order 3. Since the group Z_6 is cyclic it follows that $G/Z(G) \cong D_3$.

Therefore $Z(G) = \langle a \rangle = \{1, a\}$, with $a \in G$ and $a^2 = 1$, and G/Z(G) = $\langle xZ(G), yZ(G) \rangle$, where $x, y \in G, x^3, y^2 \in Z(G)$ and $xyZ(G) = yx^2Z(G)$. Then $\{xy, xya\} = \{yx^2, yx^2a\}$. Now we have two subcases:

Subcase 1: $xy = yx^2$. Here we have the following possibilities: i) $x^3 = 1 = y^2$. Then $yx = x^2y$ and there is a group $G_3 = \langle x, y, a \rangle$, with x, yand a satisfying the above conditions; see Table 3.

ii) $x^3 = 1$ and $y^2 = a$. Then again $yx = x^2y$ and there is a group $G_4 = \langle x, y \rangle$, with x and y satisfying the above conditions; see Table 4.

iii) $x^3 = a$ and $y^2 = 1$. Then we obtain that $x^6 = 1$ and $y = x^5yx^2$. It follows that $yx = x^5yx^3 = x^2y$ and $yx^2 = x^2yx = x^2x^2y = x^4y$. So $xy = x^4y$ and $x^3 = 1$ -which is impossible. Therefore there is no group G with the above properties.

iv) $x^3 = a = y^2$. Then $x^6 = y^3 = 1$ and again we obtain that $yx = x^2y$ and $xy = x^4y$, which is impossible. So, also in these conditions there is no exist group G.

Subcase 2: $xy = yx^2a$. Also in this subcase we have the following possibilities: i) $x^3 = 1 = y^2$. Then $yx = x^2ya$, $yx^2 = x^2yxa = x^2x^2yaa = xy$. So, a = 1-which is impossible. Therefore in these conditions there is no exist group G. ii) $x^3 = 1$ and $y^2 = a$. Then $y^4 = 1$ and we obtain that $yx = x^2ya = x^2y^3$ and $yx^2 = (yx)x = x^2y^3x = (x^2y)(y^2x) = x^2(yx)y^2 = x^2x^2y^3y^2 = xy$. It follows that

 $yx^2 = yx^2a$ and $a = y^2 = 1$ -which is impossible. Therefore there is no exist group G with the above properties.

iii) $x^3 = a$ and $y^2 = 1$. Then we obtain that $x^6 = 1$ and $y = x^5 y x^5$. It follows that $yx = x^5yx^6 = x^5y$ and there is a group $G_5 = \langle x, y \rangle$, with x and y satisfying the above conditions; see Table 5.

iv) $x^3 = a = y^2$. Then $x^6 = y^3 = 1$ and again we obtain that $yx = x^5y$ and there is a group $G_6 = \langle x, y \rangle$, with x and y satisfying the above conditions; see Table

Case VI: |Z(G)| = 1. Then according to [8,5.11] G has two subgroups H and K such that |H| = 4 and |K| = 3. Assume $K = \langle y \rangle = \{1, y, y^2\}$, with $y \in G$. Since H is a commutative (sub)group of order 4 we have two subcases:

Subcase 1: $H \cong \mathbb{Z}_4$. In this subcase there is an element $x \in G$ such that $H = \langle x \rangle = \{1, x, x^2, x^3\}$. Since $Z(G) = \{1\}$ it follows that $H \cap K = \{1\}$. Then $HK = \{1, x, x^2, x^3, y, y^2, xy, xy^2, x^2y, x^2y^2, x^3y, x^3y^2\}$ is a set with 12 distinct elements from G. It follows that G = HK and HK = KH. Hence $yx \in \{x^2y, x^3y, xy^2, x^2y^2, x^3y^2\}$ and in this subcase we have the following five possibilities:

i) $yx = x^2y$. Then $yx^2 = (yx)x = (x^2y)x = x^2x^2y = y$ and $x^2 = 1$ -which is impossible.

ii) $yx = x^3y$. Then $yx^2 = x^3(yx) = x^3x^3y = x^2y$ and $y^2x^2 = y(yx^2) = yx^2y = y^2y^2$ x^2y^2 . So $x^2 \in Z(G)$, contradiction to the hypothesis.

iii) $yx = xy^2$. Again we obtain that $x^2 \in Z(G)$. Since the proof is similar as above, this will be left to the reader.

iv) $yx = x^2y^2$. Then $yx^2 = x^2y^2x = x^2yx^2y^2 = x^2x^2y^2xy^2 = y^2xy^2 = yx^2y^2$ and, so y = 1-which is impossible.

w) $yx = x^3y^2$. Then $xy = y^2x^3$ and $yx^2 = x^3y^2x = x^3yx^3y^2 = (x^2y^2)^2$. Since the element yx^2 belongs to $\{xy^2, x^2y, x^2y^2, x^3y\}$ we will study all these possibilities: a) $yx^2 = x^2y$. Then $x^2y^2x^2y^2 = x^2y$, $y^2x^2y = 1$, $y^2x^2 = y^2$ and, so $x^2 = 1$ which is impossible.

b) $yx^2 = x^3y$. Then $x^3y^2x = x^3y$ and yx = 1-which is impossible. c) $yx^2 = xy^2$. Then $x^3y^2x = xy^2$, $x^2y^2x = y^2$, $x^2y^2 = y^2x^3$ and, so xy = 1which is impossible.

d) $yx^2 = x^2y^2$. Then $(x^2y^2)^2 = x^2y^2$ and, so $x^2y^2 = 1$ -which is impossible. Otherwise: $(x^2y^2)^2 = (xyx)^2 = (xy)(x^2y)x = (xyx^2)(x^3y^2) = (xy)(xy^2) = x(x^3y^2)y^2 = y$. On the other hand, $(x^2y^2)^2 = x^2(xyxy^2) = x^3(yx)y^2 = x^3(x^3y^2y^2) = x^2y$. It follows that $x^2 = 1$ -which is impossible.

Therefore in the conditions from this subcase there is no group G of order 12.

Subcase 2: $H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. In this subcase there are two elements $x, z \in G$ such that $H = \langle x, z \rangle = \{1, x, z, xz = zx\}$ and $x^2 = z^2 = (xz)^2 = 1$. Let n_2 be the number of the 2-sylow subgroups of G and n_3 the number of the 3-sylow subgroups of G. Then according to [5,3.7 (p. 145)] (the third Sylow's theorem) n_2 divide 3, n_3 divide 4, $n_2 \equiv 1 \pmod{2}$ and $n_3 \equiv 1 \pmod{3}$.

1) If $n_3 = 1$ then according to [5,4.2 (p. 146)] G has only two elements of order 3; these are y and y^2 . It follows that G has 10 elements which there aren't of order 3.

i) If $n_2 = 1$ then G has only one 2-sylow subgroup, namely H and also in G there are 6 elements of order 6; so o(xy) = 6. Then since Z(G) = 1 it follows that $xy \neq yx, zy \neq yz$ and the following sets $A_x = \{x, y^2xy, yxy^2\}, A_z = \{z, y^2zy, yzy^2\}, A_y = \{y, xyx, zyz\}$ and $A_{y^2} = \{y^2, xy^2x, zy^2z\}$ have distinct elements. If for a $g \in G$ denote by n_g the cardinal of the set $\{a^{-1}ga \mid a \in G\}$ then: $3 = |A_x| \leq |n_x|, 3 = |A_y| \leq |n_y|$ and $3 = |A_{y^2}| \leq |n_{y^2}|$. By the class equation: $|G| = |Z(G)| + \sum_{a \in G \setminus Z(G)} n_a$, in our case, obtain that $12 \geq 1 + 3 + 3 + 3 = 13$ -

impossible.

ii) If $n_2 = 3$ then G has three distinct 2-sylow subgroups; say H_1 , H_2 , H_3 , each isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$. It follows that there are $a \in H_1 \setminus H_2$, $b \in H_2 \setminus H_3$ and $c \in H_3 \setminus H_1$ such that $a^2 = b^2 = c^2 = 1$.

If $H_1 \cap H_2 = H_2 \cap H_3 = H_3 \cap H_1 = 1$ (1) then G has 9 elements of order 2. It follows that $\operatorname{ord}(ab) = 2$ and, so $ab = ba \in H_1 \cup H_2 \cup H_3$. We study these possibilities:

a) If $ab = a' \in H_1$ then $b = aa' \in H_1 \cap H_2$ -contradicting (1).

b) If $ab = b' \in H_2$ then $a = bb' \in H_1 \cap H_2$, again contradicting (1).

c) If $ab = c' \in H_3$ then $b = ac' \in H_2$ and ac' = c'a. Hence the subgroup $L = \{1, a, b, c'\}$ is contained in $\{H_1, H_2, H_3\}$, also -contradicting (1).

It follows that $H_1 \cap H_2 = \{1, a'\}$. Then $H_1 = \{1, a', x', a'x'\}$ and $H_2 = \{1, a', z', a'z'\}$. It follows that $x'z', a'x'z' \in G \setminus (H_1 \cup H_2)$ and $\operatorname{ord}(x'z') = \operatorname{ord}(a'x'z') \in \{2, 6\}$, because $(x'z')^k = (a'x'z')^k$ for every $k \in \{2, 4, 6\}$.

If $\operatorname{ord}(x'z') = \operatorname{ord}(a'x'z') = 6$ then $(x'z')^2$, $(a'x'z')^2 \in \{y, y^2\}$. It follows that $(x'z')^4 = a'x'z'$ and $a' = (x'z')^3$. But, $(a'x'z')^4 = x'z'$ and $(a'x'z')^3 = a'$. So, $(x'z')^3 = (a'x'z')^3$, and since $(x'z')^2 = (a'x'z')^2$ it follows that a' = 1, which is impossible. So $\operatorname{ord}(x'z') = \operatorname{ord}(a'x'z') = 2$, $x'z' = z'x' \in H_3 \setminus (H_1 \cup H_2)$, and $a'x'z' = z'x'a' \in H_3 \setminus (H_1 \cup H_2)$; hence $H_3 = \{1, x'z', a'x'z', a'\}$. Then $M = \{1, x', z', a', x'z', a'x', a'z', a'x'z'\}$ is a commutative subgroup of order 8 of G (see the following table), which is impossible. (On observe that M is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.)

The table of (sub)group M: $M = \langle 1, x', z', a' \rangle$, x'z' = z'x', x'a' = a'x', z'a' = a'z', $(x')^2 = (z')^2 = (a')^2 = 1$

	1	x'	z'	a'	x'z'	x'a'	z'a'	x'z'a'
1	1	x'	z'	a'	x'z'	x'a'	z'a'	x'z'a'
x'	x'	1	x'z'	x'a'	z'	a'	x'z'a'	z'a'
z'	z'	x'z'	1	z'a'	x'	x'z'a'	a'	x'a'
a'	a'	x'a'	z'a'	1	x'z'a'	x'	z'	x'z'
x'z'	x'z'	z'	x'	x'z'a'	1	z'a'	x'a'	a'
x'a'	x'a'	a'	x'z'a'	x'	z'a'	1	x'z'	z'
z'a'	z'a'	x'z'a'	a'	z'	x'a'	x'z'	1	x'
x'z'a'	x'z'a'	z'a'	x'a'	x'z'	a'	z'	x'	1

2) If $n_3 > 1$ then either $n_3 = 2$ or $n_3 = 4$. In the first case by [5,3.7 (p. 145)] obtain that $2 \equiv 1 \pmod{3}$ -impossible. Therefore $n_3 = 4$ and the group G has 8 elements of order 3-see again [5,4.2 (p. 146)]. It follows that G has only one

2-sylow subgroup, namely $H = \langle x, z \rangle = \{1, x, z, xz = zx\}$, with $x, z \in G$ and $x^2 = z^2 = (xz)^2 = 1$. Then $G = \{1, x, z, y, y^2, xz, xy, xy^2, zy, zy^2, xzy, xzy^2$. Since $\operatorname{ord}(xy) = 3$ it follows that $(xy)^2 = y^2x$. But $y^2x \in \{xy^2, zy, xz, zy^2, xzy, xzy^2\}$. We study all possibilities:

i) $y^2x = xy^2$. Then $(xy)^2 = xyy$ and x = 1-impossible. ii) $y^2x = zy$. Then $(xy)^2 = zy$, xyx = z, $xy^2x = 1$ and $y^2 = 1$ -impossible.

iii) $y^2x = xz$. Then $y^2 = xzx = z$ -impossible.

iv) $y^2x = zy^2$. Then yx = xzy, yz = xy and there is a group G_7 with these properties-see Table 7.

v) $y^2x = xzy$. Then $(xy)^2 = zxy$ and xy = z-impossible.

vi) $y^2x = xzy^2$. Then yx = zy, yz = xzy and there is a group G_8 with these properties-see Table 8.

Therefore we have determined 8 groups of order 12. Afterwards we are going to show the following isomorphisms: $G_3 \cong G_5$, $G_4 \cong G_6$ and $G_7 \cong G_8$. First we make up the following tables:

The group	The elements of order 2	The elements of order 3
G_1	x^6	x^4, x^8
G_2	x,y,xy	z, z^2
G_3	$y, a, xy, x^2y, ya, xya, x^2ya$	x, x^2
G_4	y^2	x, x^2
G_5	$x^{3}, y, xy, x^{2}y, x^{3}y, x^{4}y, x^{5}y$	x^2, x^4
G_6	x^3	x^2, x^4
G_7	x, z, xz	$y, y^2, xy, xy^2, zy, zy^2, xzy, xzy^2$
G_8	x, z, xz	$y, y^2, xy, xy^2, zy, zy^2, xzy, xzy^2$

The group	The elements of order 4	The elements of order 6

0 1		
G_1	x^3, x^9	x^2, x^{10}
G_2	-	$xz, xz^2, yz, yz^2, xyz, xyz^2$
G_3	_	xa, x^2a
G_4	$y, y^2, xy, xy^3, x^2y, x^2y^3$	xy^2, x^2y^2
G_5	-	x, x^5
G_6	$y, xy, x^2y, x^3y, x^4y, x^5y$	x, x^5
G_7	-	-
G_8	_	-

Now, it is straightforward to verify that:

 α) the map $f: G_3 \to G_5$ defined by $f(a) = x^3$, f(y) = y and $f(x) = x^4$ is an isomorphism of groups and $G_3 \cong G_5$;

 β) the map $f: G_4 \to G_6$ defined by $f(x) = x^4$, f(y) = y and $f(y^2) = x^3$ is an isomorphism of groups and $G_4 \cong G_6$;

 γ) the map $f: G_7 \to G_8$ defined by f(x) = z, f(z) = x and f(y) = y is an isomorphism of groups and $G_7 \cong G_8$.

Now the theorem is completely proved.

Corollary 1: The group G_3 is isomorphic to $\mathbb{Z}_2 \times S_3$, where S_3 is the symmetric group of degree 3.

Proof: In the group G_3 , the set $A = \{1, x, x^2, y, xy, x^2y\}$ is a non-commutative subgroup of order 6. So, A is isomorphic to S_3 .

Corollary 2: The group G_4 is isomorphic to a semidirect product of \mathbb{Z}_3 by \mathbb{Z}_4 . **Proof:** Left to the reader.

Corollary 3: The group G_8 is isomorphic to A_4 -the alternating group of degree 4.

Proof: The 12 elements of A_4 are eight 3-cycles, three products of disjoint transpositions, and the identity. These elements are: $\sigma = (1 \ 2 \ 3), \sigma^2 = (1 \ 3 \ 2), \tau = (1 \ 4)(2 \ 3), \mu = (1 \ 2)(3 \ 4), \tau \mu = \mu \tau = (1 \ 3)(2 \ 4), e = (1), \tau \sigma = (1 \ 3 \ 4), \mu \sigma = (2 \ 4 \ 3), \tau \sigma^2 = (1 \ 2 \ 4), \mu \sigma^2 = (1 \ 4 \ 3), \tau \mu \sigma = (1 \ 4 \ 2) \text{ and } \tau \mu \sigma^2 = (2 \ 3 \ 4).$ Now, it is easy to check that the map $f: G_8 \to A_4$, defined by: $f(x) = \tau, f(y) = \sigma$ and $f(z) = \mu$ is an isomorphism of groups.

Corollary 4: The group G_8 is generated by the elements y, xy and zy.

Proof: It is straightforward to verify that $A_4 = \langle \sigma, \tau \sigma, \mu \sigma \rangle$. Now, Corollary 3 completes the proof.

Corollary 5: The group G_8 does not have no subgroup of order 6.

Proof: From [8,3.11] it follows that A_4 is a group of order 12 having no subgroup of order 6. Again Corollary 3 completes the proof.

Corollary 6: The group G_8 is not simple.

Proof: The set $V = \{\tau, \mu, \tau\mu = \mu\tau\}$ it is easily seen to be a subgroup of A_4 . Since V contain all the permutations of S_4 of a given cycle structure, V is normal in S_4 , a fortiori, it is normal in A_4 . Therefore A_4 is not simple, and according to Corollary 3, G_8 has the same property. (On observe that V is isomorphic to H).

Otherwise: It is easy to check that the subgroup $H = \langle x, z \rangle$ is normal in G_8 . **Corollary 7:** The normality of subgroups of a group G need not be transitive.

Proof: Counterexample: in G_8 , the subgroup $N = \{1, xz\}$ is normal in $H = \{1, x, z, xz\}$, which is normal in G_8 (see Corollary 6), but since $yN \neq Ny$ it follows that N is not normal in G_8 .

Corollary 8: Every group G of order 12 that is not isomorphic to A_4 contains an element of order 6-[8,5.16].

Proof: The elements: $x \in G_1$, $yz \in G_2$, $xa \in G_3$, $xy^2 \in G_4$, $x \in G_5$, $x \in G_6$ are of order 6.

The (multiplication) tables of these 8 groups which have been determined. Table 1: $G_1 \cong \mathbb{Z}_{12}$

•	1	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}
1	1	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}
x	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1
x^2	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1	x
x^3	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1	x	x^2
x^4	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1	x	x^2	x^3
x^5	x^5	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1	x	x^2	x^3	x^4
x^6	x^6	x^7	x^8	x^9	x^{10}	x^{11}	1	x	x^2	x^3	x^4	x^5
x^7	x^7	x^8	x^9	x^{10}	x^{11}	1	x	x^2	x^3	x^4	x^5	x^6
x^8	x^8	x^9	x^{10}	x^{11}	1	x	x^2	x^3	x^4	x^5	x^6	x^7
x^9	x^9	x^{10}	x^{11}	1	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8
x^{10}	x^{10}	x^{11}	1	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9
x^{11}	x^{11}	1	x	x^2	x^3	x^4	x^5	x^6	x^7	x^8	x^9	x^{10}

	1	x	y	z	z^2	xy	xz	xz^2	yz	yz^2	xyz	xyz^2
1	1	x	y	z	z^2	xy	xz	xz^2	yz	yz^2	xyz	xyz^2
x	x	1	xy	xz	xz^2	y	z	z^2	xyz	xyz^2	yz	yz^2
y	y	xy	1	yz	yz^2	x	xyz	xyz^2	z	z^2	xz	xz^2
z	z	xz	yz	z^2	1	xyz	xz^2	x	yz^2	y	xyz^2	xy
z^2	z^2	xz^2	yz^2	1	z	xyz^2	x	xz	y	yz	xy	xyz
xy	xy	y	x	xyz	xyz^2	1	yz	yz^2	xz	xz^2	z	z^2
xz	xz	z	xyz	xz^2	x	yz	z^2	1	xyz^2	xy	yz^2	y
xz^2	xz^2	z^2	xyz^2	x	xz	yz^2	1	z	yz^2	xyz	y	yz
yz	yz	xyz	z	yz^2	y	xz	xyz^2	xy	z^2	1	xz^2	x
yz^2	yz^2	xyz^2	z^2	y	yz	xz^2	xy	xyz	1	z	x	xz
xyz	xyz	yz	xz	xyz^2	xy	z	yz^2	y	xz^2	x	z^2	1
xyz^2	xyz^2	yz^2	xz^2	xy	xyz	z^2	y	yz	x	xz	1	z

Table 2: $G_2 \cong \mathbf{Z}_2 \times \mathbf{Z}_2 \times \mathbf{Z}_3$

Table 3:
$$G_3 = \langle x, y, a \rangle, x^3 = y^2 = a^2 = \frac{1}{2}, yx = x^2y, Z(G) = \langle a \rangle$$

•	1	x	x^2	y	a	xy	x^2y	xa	x^2a	ya	xya	x^2ya
1	1	x	x^2	y	a	xy	x^2y	xa	x^2a	ya	xya	x^2ya
x	x	x^2	1	xy	xa	x^2y	y	x^2a	a	xya	x^2ya	ya
x^2	x^2	1	x	x^2y	x^2a	y	xy	a	xa	x^2ya	ya	xya
y	y	x^2y	xy	1	ya	x^2	x	x^2ya	xya	a	x^2a	xa
a	a	xa	x^2a	ya	1	xya	x^2ya	x	x^2	y	xy	x^2y
xy	xy	y	x^2y	x	xya	1	x^2	ya	x^2ya	xa	a	x^2a
x^2y	x^2y	xy	y	x^2	x^2ya	x	1	xya	ya	x^2a	xa	a
xa	xa	x^2a	a	xya	x	x^2ya	ya	x^2	1	xy	x^2y	y
x^2a	x^2a	a	xa	x^2ya	x^2	ya	xya	1	x	x^2y	y	xy
ya	ya	x^2ya	xya	a	y	x^2a	xa	x^2y	xy	1	x^2	x
xya	xya	ya	x^2ya	xa	xy	a	x^2a	y	x^2y	x	1	x^2
x^2ya	$ x^2ya $	xya	ya	x^2a	x^2y	xa	a	xy	y	x^2	x	1

Table 4: $G_4 = \langle x, y \rangle, x^3 = 1, y^2 = a, yx = x^2y, Z(G)$	= < a >

•	1	x	x^2	y	y^2	y^3	xy	xy^2	xy^3	x^2y	x^2y^2	x^2y^3
1	1	x	x^2	y	y^2	y^3	xy	xy^2	xy^3	x^2y	x^2y^2	x^2y^3
x	x	x^2	1	xy	xy^2	xy^3	x^2y	x^2y^2	x^2y^3	y	y^2	y^3
x^2	x^2	1	x	x^2y	x^2y^2	x^2y^3	y	y^2	y^3	xy	xy^2	xy^3
y	y	x^2y	xy	y^2	y^3	1	x^2y^2	x^2y^3	x^2	xy^2	xy^3	x
y^2	y^2	xy^2	x^2y^2	y^3	1	y	xy^3	x	xy	x^2y^3	x^2	x^2y
y^3	y^3	x^2y^3	xy^3	1	y	y^2	x^2	x^2y	x^2y^2	x	xy	xy^2
xy	xy	y	x^2y	xy^2	xy^3	x	y^2	y^3	1	x^2y^2	x^2y^3	x^2
xy^2	xy^2	x^2y^2	y^2	xy^3	x	xy	x^2y^3	x^2	x^2y	y^3	1	y
xy^3	xy^3	y^3	x^2y^3	x	xy	xy^2	1	y	y^2	x^2	x^2y	x^2y^2
x^2y	x^2y	xy	y	x^2y^2	x^2y^3	x^2	xy^2	xy^3	x	y^2	y^3	1
x^2y^2	x^2y^2	y^2	xy^2	x^2y^3	x^2	x^2y	y^3	1	y	xy^3	x	xy
x^2y^3	x^2y^3	xy^3	y^3	x^2	x^2y	x^2y^2	x	xy	xy^2	1	y	y^2

Tabl	le 5:	$G_6 =$	< x, y	$>, x^3$	$a^{3} = a,$	$y^2 =$	$a^2 =$	1, yx	$= x^{5}$	y, Z(0)	$G) = \langle c \rangle$	a >
	1	x	x^2	x^3	x^4	x^5	y	xy	x^2y	x^3y	x^4y	x^5y
1	1	x	x^2	x^3	x^4	x^5	y	xy	x^2y	x^3y	x^4y	x^5y
x	x	x^2	x^3	x^4	x^5	1	xy	x^2y	x^3y	x^4y	x^5y	y
x^2	x^2	x^3	x^4	x^5	1	x	x^2y	x^3y	x^4y	x^5y	y	xy
x^3	x^3	x^4	x^5	1	x	x^2	x^3y	x^4y	x^5y	y	xy	x^2y
x^4	x^4	x^5	1	x	x^2	x^3	x^4y	x^5y	y	xy	x^2y	x^3y
x^5	x^5	1	x	x^2	x^3	x^4	x^5y	y	xy	x^2y	x^3y	x^4y
y	y	x^5y	x^4y	x^3y	x^2y	xy	1	x^5	x^4	x^3	x^2	x
xy	xy	y	x^5y	x^4y	x^3y	x^2y	x	1	x^5	x^4	x^3	x^2
x^2y	x^2y	xy	y	x^5y	x^4y	x^3y	x^2	x	1	x^5	x^4	x^3
x^3y	x^3y	x^2y	xy	y	x^5y	x^4y	x^3	x^2	x	1	x^5	x^4
x^4y	x^4y	x^3y	x^2y	xy	y	x^5y	x^4	x^3	x^2	x	1	x^5
x^5y	x^5y	x^4y	x^3y	x^2y	xy	y	x^5	x^4	x^3	x^2	x	1

Tab	le 6:	$G_{6} =$	< x, y	y >, x	$^{3} = y^{2}$	$a^{2} = a,$	yx =	x^5y ,	$a^2 =$	1 Z(C	$\tilde{r}) = <$	a >	
	1	x	x^2	x^3	x^4	x^5	y	xy	x^2y	x^3y	x^4y	x^5y	
1	1	x	x^2	x^3	x^4	x^5	y	xy	x^2y	x^3y	x^4y	x^5y	
x	x	x^2	x^3	x^4	x^5	1	xy	x^2y	x^3y	x^4y	x^5y	y	
x^2	x^2	x^3	x^4	x^5	1	x	x^2y	x^3y	x^4y	x^5y	y	xy	
x^3	x^3	x^4	x^5	1	x	x^2	x^3y	x^4y	x^5y	y	xy	x^2y	
x^4	x^4	x^5	1	x	x^2	x^3	x^4y	x^5y	y	xy	x^2y	x^3y	
x^5	x^5	1	x	x^2	x^3	x^4	x^5y	y	xy	x^2y	x^3y	x^4y	
y	y	x^5y	x^4y	x^3y	x^2y	xy	x^3	x^2	x	1	x^5	x^4	
xy	xy	y	x^5y	x^4y	x^3y	x^2y	x^4	x^3	x^2	x	1	x^5	
x^2y	x^2y	xy	y	x^5y	x^4y	x^3y	x^5	x^4	x^3	x^2	x	1	
x^3y	x^3y	x^2y	xy	y	x^5y	x^4y	1	x^5	x^4	x^3	x^2	x	
x^4y	x^4y	x^3y	x^2y	xy	y	x^5y	x	1	x^5	x^4	x^3	x^2	
x^5y	x^5y	x^4y	x^3y	x^2y	xy	y	x^2	x	1	x^5	x^4	x^3	

Table 7: $G_7 = \langle x, y, z \rangle, x^2 = y^3 = z^2 = 1, yx = xzy, xz = zx, yz = xy, Z(G) = \{1\}$

•	1	x	z	xz	y	y^2	xy	xy^2	zy	zy^2	xzy	xzy^2
1	1	x	z	xz	y	y^2	xy	xy^2	zy	zy^2	xzy	xzy^2
x	x	1	xz	z	xy	xy^2	y	y^2	xzy	xzy^2	zy	zy^2
z	z	xz	1	x	zy	zy^2	xzy	xzy^2	y	y^2	xy	xy^2
xz	xz	z	x	1	xzy	xzy^2	zy	zy^2	xy	xy^2	y	y^2
y	y	xzy	xy	zy	y^2	1	xzy^2	xz	xy^2	x	zy^2	z
y^2	y^2	zy^2	xzy^2	xy^2	1	y	z	zy	xz	xzy	x	xy
xy	xy	zy	y	xzy	xy^2	x	zy^2	z	y^2	1	xzy^2	xz
xy^2	xy^2	xzy^2	zy^2	y^2	x	xy	xz	xzy	z	zy	1	y
zy	zy	xy	xzy	y	zy^2	z	xy^2	x	xzy^2	xz	y^2	1
zy^2	zy^2	y^2	xy^2	xzy^2	z	zy	1	y	x	xy	xz	xzy
xzy	xzy	y	zy	xy	xzy^2	xz	y^2	1	zy^2	z	xy^2	x
xzy^2	xzy^2	xy^2	y^2	zy^2	xz	xzy	x	xy	1	y	z	zy

	1	x	z	xz	y	y^2	xy	xy^2	zy	zy^2	xzy	xzy^2
1	1	x	z	xz	y	y^2	xy	xy^2	zy	zy^2	xzy	xzy^2
x	x	1	xz	z	xy	xy^2	y	y^2	xzy	xzy^2	zy	zy^2
z	z	xz	1	x	zy	zy^2	xzy	xzy^2	y	y^2	xy	xy^2
xz	xz	z	x	1	xzy	xzy^2	zy	zy^2	xy	xy^2	$y_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	y^2
y_{a}	y	zy	xzy	xy	y^2	1	zy^2	z	xzy^2	xz	xy^2	x
y^2	y^2	xzy^2	xy^2	zy^2	1	y	xz	xzy	$x_{\hat{a}}$	xy	z	zy
xy	xy	xzy	zy	y	xy^2	x	xzy^2	xz	zy^2	z	y^2	1
xy^2	xy^2	zy^2	y^2	xzy^2	x_{a}	xy	z	zy	1	y	xz	xzy
zy	zy	y_{a}	xy_{α}	xzy	zy^2	z	y^2	1	xy^2	x	xzy^2	xz
zy^2	zy^2	xy^2	xzy^2	y^2	z	zy	x_{2}	xy	xz	xzy	1	y
xzy	xzy	xy	y_{α}	zy	xzy^2	xz	xy^2	x	y^2	1	zy^2	z
xzy^2	xzy^2	y^2	zy^2	xy^2	xz	xzy	1	y	z	zy	x	xy

Table 8: $G_8 = \langle x, y, z \rangle$, $x^2 = y^3 = z^2 = 1$, yx = zy, xz = zx, yz = xzy, $Z(G) = \{1\}$

References

- Călugăreanu G., Introduction to Abelian Groups Theory, (in Romanian), Editura Expert, Cluj-Napoca, 1994
- [2] Dickson J.E., Definitions of a group and a field by independent postulates, Trans. Amer. Math. Soc., 6(1905), p. 198-204
- [3] Fuchs L., Infinite Abelian Groups Theory, Vol. I, Academic Press, New York and London, Pure and Applied Mathematics, 36, 1970
- [4] Jungnickel D., On the Uniqueness of the Cyclic Group of Order n, Amer. Math. Monthly, 6(1992), p. 545-547
- [5] Popescu D., Vraciu C., *Elements of Finite Group Theory*, (In Romanian), Editura Şiinţifică şi Enciclopedică, Bucureşti, 1986
- [6] Purdea I., On the groups of order $n \leq 10$, Selected paper from "Didactica Matematicii", Vol. 1984-1992, "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Research Seminars, Cluj-Napoca, 1992
- [7] Purdea I., Pic G., Algebra, (In Romanian), "Babeş-Bolyai" University, Faculty of Mathematics and Mechanics, Lit., Cluj-Napoca, 1973
- [8] Rotmann J.J., The Theory of Groups: An introduction, Allyn and Bacon, Inc., Boston, 1968
- [9] Vălcan D., On some groups of finite order, (In Romanian), Lucrările Seminarului de "Didactica Matematicii" Vol. 13(1998), p. 177-182

BABEŞ-BOLYAI UNIVERSITY DEPARTMENT OF MATHEMATICS KOGĂLNICEANU 1, 400084 CLUJ-NAPOCA, ROMANIA *E-mail address*: dvalcan@math.ubbcluj.ro