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A method to determine all non-isomorphic groups
of order 12

Dumitru Vălcan

Abstract. The present work gives a method to determine of all non-isomorphic groups of order

12 and gives descriptions of all these groups.

In [6] Purdea has determined all non-isomorphic groups of order n ≤ 10, and I
have determined in [9] all these groups of order n ∈ {p, q, pq, p2, p3}, where p and q
are two distinct prime numbers.

In this work we will present a method to determine all non-isomorphic groups
of order 12. In this context, throughout this paper by group we mean a group
(denoted by G) of order 12 in multiplicative notation and we will denote: by 1 the
identity (the ”neutral”) element of G, by ord(g) the order of the element g ∈ G and
by |A| the cardinal of the set A. If A is a subgroup of G then |A| is (also) the order
of A.

Following the same reasoning as in [9] we will prove the main result of this paper:
Theorem: There are 5 non-isomorphic groups of order 12.
Proof: So, let G be a group of order 12 and Z(G) his center. According to

Lagrange’s theorem we have the following cases:
Case I: |Z(G)| = 12. In this case G is commutative and by [3,8.4] and [5,2.2

(p. 86) and 6.1 (p. 97)] it follows that either G = G1
∼= Z12

∼= Z4 × Z3 or
G = G2

∼= Z2×Z2×Z3. So, either there is an element x ∈ G1 such that ord(x) = 12
and G1 = {1, x, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11}-for this group see Table 1, or
there are x, y, z ∈ G2 such that ord(x) = ord(y) = 2, ord(z) = 3, xy = yx, xz = zx,
yz = zy and G2 = {1, x, y, z, z2, xy, xz, xz2, yz, yz2, xyz, xyz2}-for this group see
Table 2.

Case II: |Z(G)| = 6. Then |G/Z(G)| = 2 and since the group G/Z(G) is cyclic,
by [5,2.2 (p. 143)] it follows that G is commutative-contradiction to the hypothesis.
So, there is no group G of order 12 with |Z(G)| = 6.

Case III: |Z(G)| = 4. Also in this case the group G/Z(G) is cyclic and us-
ing again [5,2.2 (p. 143)] it follows that G is commutative-contradiction to the
hypothesis. Therefore there is no group G of order 12 with |Z(G)| = 4.

Case IV: |Z(G)| = 3. In this case |G/Z(G)| = 4 and according to [8,5.5] the
group G/Z(G) is commutative. Again by [3,8.4] and [5,2.2 (p. 86) and 6.1 (p. 97)]
it follows that either G/Z(G) ∼= Z4 or G/Z(G) ∼= Z2 × Z2. Since the group Z4 is
cyclic, it follows that only the second possibility holds.
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Therefore G/Z(G) = {Z(G), xZ(G), yZ(G), xyZ(G)} and x2 ∈ Z(G), y2 ∈
Z(G), xyZ(G) = yxZ(G). Since Z(G) is a cyclic subgroup of order 3 of G as-
sume Z(G) = {1, a, a2}, with a ∈ G. Hence G = 〈x, y, a〉. If xy = yx then G is
commutative, which is impossible. So, xy 6= yx and there is an element b ∈ {a, a2}
such that yx = xyb and xy = yxb2. Now we distinguish the following subcases:

1) x2 = y2 = 1. Then (yx)2 = yxyx = y(xy)x = y(yxb2)x = y2x2b2 = b2

and (xy)2 = xyxy = x(yx)y = x(xyb)y = x2y2b = b. On the other hand, (yx)2 =
yxyx = (xyb)(xyb) = (xy)2b2 = b · b2 = 1. It follows that b = 1-contradiction to the
hypothesis.

2) x2 = 1 and y2 = c ∈ {a, a2}. Then (yx)2 = yxyx = y(xy)x = y(yxb2)x =
y2x2b2 = b2c and (xy)2 = xyxy = x(yx)y = x(xyb)y = x2y2b = bc. On the
other hand, (yx)2 = yxyx = (xyb)(xyb) = (xy)2b2 = bcb2 = c. It follows that
b2 = 1-contradiction to the hypothesis (b is an element of order 3).

3) x2 = a and y2 = a2. Then (yx)2 = yxyx = y(xy)x = y(yxb2)x = y2x2b2 =
a2ab2 = b2 and (xy)2 = xyxy = x(yx)y = x(xyb)y = x2y2b = b. On the other
hand, (yx)2 = yxyx = (xyb)(xyb) = (xy)2b2 = bb2 = 1. It follows that b2 = 1-
contradiction to the hypothesis.

4) x2 = y2 = c ∈ {a, a2}. Then (yx)2 = yxyx = y(xy)x = y(yxb2)x =
y2x2b2 = b2c2 and (xy)2 = xyxy = x(yx)y = x(xyb)y = x2y2b = bc2. On the
other hand, (yx)2 = yxyx = (xyb)(xyb) = (xy)2b2 = bc2b2 = c2. It follows that
b2 = 1-contradiction to the hypothesis.

So there is no group G of order 12 with |Z(G)| = 3.
Case V: |Z(G)| = 2. Then |G/Z(G)| = 6 and according to [9,4.2] either

G/Z(G) ∼= Z6 or G/Z(G) ∼= D3, where D3 is the dihedral group of order 3. Since
the group Z6 is cyclic it follows that G/Z(G) ∼= D3.

Therefore Z(G) = 〈a〉 = {1, a}, with a ∈ G and a2 = 1, and G/Z(G) =
〈xZ(G), yZ(G)〉, where x, y ∈ G, x3, y2 ∈ Z(G) and xyZ(G) = yx2Z(G). Then
{xy, xya} = {yx2, yx2a}. Now we have two subcases:

Subcase 1: xy = yx2. Here we have the following possibilities:
i) x3 = 1 = y2. Then yx = x2y and there is a group G3 = 〈x, y, a〉, with x, y

and a satisfying the above conditions; see Table 3.
ii) x3 = 1 and y2 = a. Then again yx = x2y and there is a group G4 = 〈x, y〉,

with x and y satisfying the above conditions; see Table 4.
iii) x3 = a and y2 = 1. Then we obtain that x6 = 1 and y = x5yx2. It

follows that yx = x5yx3 = x2y and yx2 = x2yx = x2x2y = x4y. So xy = x4y
and x3 = 1-which is impossible. Therefore there is no group G with the above
properties.

iv) x3 = a = y2. Then x6 = y3 = 1 and again we obtain that yx = x2y and
xy = x4y, which is impossible. So, also in these conditions there is no exist group
G.

Subcase 2: xy = yx2a. Also in this subcase we have the following possibilities:
i) x3 = 1 = y2. Then yx = x2ya, yx2 = x2yxa = x2x2yaa = xy. So,

a = 1-which is impossible. Therefore in these conditions there is no exist group G.
ii) x3 = 1 and y2 = a. Then y4 = 1 and we obtain that yx = x2ya = x2y3 and

yx2 = (yx)x = x2y3x = (x2y)(y2x) = x2(yx)y2 = x2x2y3y2 = xy. It follows that
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yx2 = yx2a and a = y2 = 1-which is impossible. Therefore there is no exist group
G with the above properties.

iii) x3 = a and y2 = 1. Then we obtain that x6 = 1 and y = x5yx5. It follows
that yx = x5yx6 = x5y and there is a group G5 = 〈x, y〉, with x and y satisfying
the above conditions; see Table 5.

iv) x3 = a = y2. Then x6 = y3 = 1 and again we obtain that yx = x5y and
there is a group G6 = 〈x, y〉, with x and y satisfying the above conditions; see Table
6.

Case VI: |Z(G)| = 1. Then according to [8,5.11] G has two subgroups H and
K such that |H| = 4 and |K| = 3. Assume K = 〈y〉 = {1, y, y2}, with y ∈ G. Since
H is a commutative (sub)group of order 4 we have two subcases:

Subcase 1: H ∼= Z4. In this subcase there is an element x ∈ G such that
H = 〈x〉 = {1, x, x2, x3}. Since Z(G) = {1} it follows that H ∩ K = {1}.
Then HK = {1, x, x2, x3, y, y2, xy, xy2, x2y, x2y2, x3y, x3y2} is a set with 12 dis-
tinct elements from G. It follows that G = HK and HK = KH. Hence
yx ∈ {x2y, x3y, xy2, x2y2, x3y2} and in this subcase we have the following five pos-
sibilities:

i) yx = x2y. Then yx2 = (yx)x = (x2y)x = x2x2y = y and x2 = 1-which is
impossible.

ii) yx = x3y. Then yx2 = x3(yx) = x3x3y = x2y and y2x2 = y(yx2) = yx2y =
x2y2. So x2 ∈ Z(G), contradiction to the hypothesis.

iii) yx = xy2. Again we obtain that x2 ∈ Z(G). Since the proof is similar as
above, this will be left to the reader.

iv) yx = x2y2. Then yx2 = x2y2x = x2yx2y2 = x2x2y2xy2 = y2xy2 = yx2y
and, so y = 1-which is impossible.

v) yx = x3y2. Then xy = y2x3 and yx2 = x3y2x = x3yx3y2 = (x2y2)2. Since
the element yx2 belongs to {xy2, x2y, x2y2, x3y} we will study all these possibilities:

a) yx2 = x2y. Then x2y2x2y2 = x2y, y2x2y = 1, y2x2 = y2 and, so x2 = 1-
which is impossible.

b) yx2 = x3y. Then x3y2x = x3y and yx = 1-which is impossible.
c) yx2 = xy2. Then x3y2x = xy2, x2y2x = y2, x2y2 = y2x3 and, so xy = 1-

which is impossible.
d) yx2 = x2y2. Then (x2y2)2 = x2y2 and, so x2y2 = 1-which is impossible.
Otherwise: (x2y2)2 = (xyx)2 = (xy)(x2y)x = (xyx2)(x3y2) = (xy)(xy2) =

x(x3y2)y2 = y. On the other hand, (x2y2)2 = x2(xyxy2) = x3(yx)y2 =
x3(x3y2y2) = x2y. It follows that x2 = 1-which is impossible.

Therefore in the conditions from this subcase there is no group G of order 12.
Subcase 2: H ∼= Z2 × Z2. In this subcase there are two elements x, z ∈ G

such that H = 〈x, z〉 = {1, x, z, xz = zx} and x2 = z2 = (xz)2 = 1. Let n2 be the
number of the 2-sylow subgroups of G and n3 the number of the 3-sylow subgroups
of G. Then according to [5,3.7 (p. 145)] (the third Sylow’s theorem) n2 divide 3,
n3 divide 4, n2 ≡ 1(mod 2) and n3 ≡ 1(mod 3).

1) If n3 = 1 then according to [5,4.2 (p. 146)] G has only two elements of order
3; these are y and y2. It follows that G has 10 elements which there aren’t of order
3.
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i) If n2 = 1 then G has only one 2-sylow subgroup, namely H and also in G
there are 6 elements of order 6; so o(xy) = 6. Then since Z(G) = 1 it follows that
xy 6= yx, zy 6= yz and the following sets Ax = {x, y2xy, yxy2}, Az = {z, y2zy, yzy2},
Ay = {y, xyx, zyz} and Ay2 = {y2, xy2x, zy2z} have distinct elements. If for a
g ∈ G denote by ng the cardinal of the set {a−1ga | a ∈ G} then: 3 = |Ax| ≤ |nx|,
3 = |Az| ≤ |nz|, 3 = |Ay| ≤ |ny| and 3 = |Ay2 | ≤ |ny2 |. By the class equation:
|G| = |Z(G)| +

∑
a∈G\Z(G)

na, in our case, obtain that 12 ≥ 1 + 3 + 3 + 3 + 3 = 13-

impossible.
ii) If n2 = 3 then G has three distinct 2-sylow subgroups; say H1, H2, H3,

each isomorphic to Z2 ×Z2. It follows that there are a ∈ H1 \H2, b ∈ H2 \H3 and
c ∈ H3 \H1 such that a2 = b2 = c2 = 1.

If H1 ∩ H2 = H2 ∩ H3 = H3 ∩ H1 = 1 (1) then G has 9 elements of order 2.
It follows that ord(ab) = 2 and, so ab = ba ∈ H1 ∪ H2 ∪ H3. We study these
possibilities:

a) If ab = a′ ∈ H1 then b = aa′ ∈ H1 ∩H2-contradicting (1).
b) If ab = b′ ∈ H2 then a = bb′ ∈ H1 ∩H2, again contradicting (1).
c) If ab = c′ ∈ H3 then b = ac′ ∈ H2 and ac′ = c′a. Hence the subgroup

L = {1, a, b, c′} is contained in {H1,H2,H3}, also -contradicting (1).
It follows that H1 ∩ H2 = {1, a′}. Then H1 = {1, a′, x′, a′x′} and H2 =

{1, a′, z′, a′z′}. It follows that x′z′, a′x′z′ ∈ G \ (H1 ∪H2) and ord(x′z′) =
ord(a′x′z′) ∈ {2, 6}, because (x′z′)k = (a′x′z′)k for every k ∈ {2, 4, 6}.

If ord(x′z′) = ord(a′x′z′) = 6 then (x′z′)2, (a′x′z′)2 ∈ {y, y2}. It follows that
(x′z′)4 = a′x′z′ and a′ = (x′z′)3. But, (a′x′z′)4 = x′z′ and (a′x′z′)3 = a′. So,
(x′z′)3 = (a′x′z′)3, and since (x′z′)2 = (a′x′z′)2 it follows that a′ = 1, which is
impossible. So ord(x′z′) = ord(a′x′z′) = 2, x′z′ = z′x′ ∈ H3 \ (H1 ∪H2), and
a′x′z′ = z′x′a′ ∈ H3 \ (H1 ∪H2); hence H3 = {1, x′z′, a′x′z′, a′}. Then M =
{1, x′, z′, a′, x′z′, a′x′, a′z′, a′x′z′} is a commutative subgroup of order 8 of G (see
the following table), which is impossible. (On observe that M is isomorphic to
Z2 × Z2 × Z2.)

The table of (sub)group M : M =< 1, x′, z′, a′ >, x′z′ = z′x′, x′a′ = a′x′,
z′a′ = a′z′, (x′)2 = (z′)2 = (a′)2 = 1

· 1 x′ z′ a′ x′z′ x′a′ z′a′ x′z′a′

1 1 x′ z′ a′ x′z′ x′a′ z′a′ x′z′a′

x′ x′ 1 x′z′ x′a′ z′ a′ x′z′a′ z′a′

z′ z′ x′z′ 1 z′a′ x′ x′z′a′ a′ x′a′

a′ a′ x′a′ z′a′ 1 x′z′a′ x′ z′ x′z′

x′z′ x′z′ z′ x′ x′z′a′ 1 z′a′ x′a′ a′

x′a′ x′a′ a′ x′z′a′ x′ z′a′ 1 x′z′ z′

z′a′ z′a′ x′z′a′ a′ z′ x′a′ x′z′ 1 x′

x′z′a′ x′z′a′ z′a′ x′a′ x′z′ a′ z′ x′ 1

2) If n3 > 1 then either n3 = 2 or n3 = 4. In the first case by [5,3.7 (p. 145)]
obtain that 2 ≡ 1 (mod3)-impossible. Therefore n3 = 4 and the group G has
8 elements of order 3-see again [5,4.2 (p. 146)]. It follows that G has only one
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2-sylow subgroup, namely H = 〈x, z〉 = {1, x, z, xz = zx}, with x, z ∈ G and
x2 = z2 = (xz)2 = 1. Then G = {1, x, z, y, y2, xz, xy, xy2, zy, zy2, xzy, xzy2. Since
ord(xy) = 3 it follows that (xy)2 = y2x. But y2x ∈ {xy2, zy, xz, zy2, xzy, xzy2}.
We study all possibilities:

i) y2x = xy2. Then (xy)2 = xyy and x = 1-impossible.
ii) y2x = zy. Then (xy)2 = zy, xyx = z, xy2x = 1 and y2 = 1-impossible.
iii) y2x = xz. Then y2 = xzx = z-impossible.
iv) y2x = zy2. Then yx = xzy, yz = xy and there is a group G7 with these

properties-see Table 7.
v) y2x = xzy. Then (xy)2 = zxy and xy = z-impossible.
vi) y2x = xzy2. Then yx = zy, yz = xzy and there is a group G8 with these

properties-see Table 8.
Therefore we have determined 8 groups of order 12. Afterwards we are going to

show the following isomorphisms: G3
∼= G5, G4

∼= G6 and G7
∼= G8. First we make

up the following tables:
The group The elements of order 2 The elements of order 3

G1 x6 x4, x8

G2 x, y, xy z, z2

G3 y, a, xy, x2y, ya, xya, x2ya x, x2

G4 y2 x, x2

G5 x3, y, xy, x2y, x3y, x4y, x5y x2, x4

G6 x3 x2, x4

G7 x, z, xz y, y2, xy, xy2, zy, zy2, xzy, xzy2

G8 x, z, xz y, y2, xy, xy2, zy, zy2, xzy, xzy2

The group The elements of order 4 The elements of order 6
G1 x3, x9 x2, x10

G2 - xz, xz2, yz, yz2, xyz, xyz2

G3 - xa, x2a
G4 y, y2, xy, xy3, x2y, x2y3 xy2, x2y2

G5 - x, x5

G6 y, xy, x2y, x3y, x4y, x5y x, x5

G7 - -
G8 - -

Now, it is straightforward to verify that:
α) the map f : G3 → G5 defined by f(a) = x3, f(y) = y and f(x) = x4 is an

isomorphism of groups and G3
∼= G5;

β) the map f : G4 → G6 defined by f(x) = x4, f(y) = y and f(y2) = x3 is an
isomorphism of groups and G4

∼= G6;
γ) the map f : G7 → G8 defined by f(x) = z, f(z) = x and f(y) = y is an

isomorphism of groups and G7
∼= G8.

Now the theorem is completely proved.
Corollary 1: The group G3 is isomorphic to Z2×S3, where S3 is the symmetric

group of degree 3.
Proof: In the group G3, the set A = {1, x, x2, y, xy, x2y} is a non-commutative

subgroup of order 6. So, A is isomorphic to S3.
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Corollary 2: The group G4 is isomorphic to a semidirect product of Z3 by Z4.
Proof: Left to the reader.
Corollary 3: The group G8 is isomorphic to A4-the alternating group of degree

4.
Proof: The 12 elements of A4 are eight 3-cycles, three products of disjoint

transpositions, and the identity. These elements are: σ = (1 2 3), σ2 = (1 3 2),
τ = (1 4)(2 3), µ = (1 2)(3 4), τµ = µτ = (1 3)(2 4), e = (1), τσ = (1 3 4),
µσ = (2 4 3), τσ2 = (1 2 4), µσ2 = (1 4 3), τµσ = (1 4 2) and τµσ2 = (2 3 4).
Now, it is easy to check that the map f : G8 → A4, defined by: f(x) = τ , f(y) = σ
and f(z) = µ is an isomorphism of groups.

Corollary 4: The group G8 is generated by the elements y, xy and zy.
Proof: It is straightforward to verify that A4 =< σ, τσ, µσ >. Now, Corollary

3 completes the proof.
Corollary 5: The group G8 does not have no subgroup of order 6.
Proof: From [8,3.11] it follows that A4 is a group of order 12 having no subgroup

of order 6. Again Corollary 3 completes the proof.
Corollary 6: The group G8 is not simple.
Proof: The set V = {τ, µ, τµ = µτ} it is easily seen to be a subgroup of A4.

Since V contain all the permutations of S4 of a given cycle structure, V is normal
in S4, a fortiori, it is normal in A4. Therefore A4 is not simple, and according to
Corollary 3, G8 has the same property. (On observe that V is isomorphic to H).

Otherwise: It is easy to check that the subgroup H =< x, z > is normal in G8.
Corollary 7: The normality of subgroups of a group G need not be transitive.
Proof: Counterexample: in G8, the subgroup N = {1, xz} is normal in H =

{1, x, z, xz}, which is normal in G8 (see Corollary 6), but since yN 6= Ny it follows
that N is not normal in G8.

Corollary 8: Every group G of order 12 that is not isomorphic to A4 contains
an element of order 6-[8,5.16].

Proof: The elements: x ∈ G1, yz ∈ G2, xa ∈ G3, xy2 ∈ G4, x ∈ G5, x ∈ G6 are
of order 6.

The (multiplication) tables of these 8 groups which have been
determined. Table 1: G1

∼= Z12

· 1 x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1 1 x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x x x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 1
x2 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 1 x
x3 x3 x4 x5 x6 x7 x8 x9 x10 x11 1 x x2

x4 x4 x5 x6 x7 x8 x9 x10 x11 1 x x2 x3

x5 x5 x6 x7 x8 x9 x10 x11 1 x x2 x3 x4

x6 x6 x7 x8 x9 x10 x11 1 x x2 x3 x4 x5

x7 x7 x8 x9 x10 x11 1 x x2 x3 x4 x5 x6

x8 x8 x9 x10 x11 1 x x2 x3 x4 x5 x6 x7

x9 x9 x10 x11 1 x x2 x3 x4 x5 x6 x7 x8

x10 x10 x11 1 x x2 x3 x4 x5 x6 x7 x8 x9

x11 x11 1 x x2 x3 x4 x5 x6 x7 x8 x9 x10
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Table 2: G2
∼= Z2 × Z2 × Z3

· 1 x y z z2 xy xz xz2 yz yz2 xyz xyz2

1 1 x y z z2 xy xz xz2 yz yz2 xyz xyz2

x x 1 xy xz xz2 y z z2 xyz xyz2 yz yz2

y y xy 1 yz yz2 x xyz xyz2 z z2 xz xz2

z z xz yz z2 1 xyz xz2 x yz2 y xyz2 xy
z2 z2 xz2 yz2 1 z xyz2 x xz y yz xy xyz
xy xy y x xyz xyz2 1 yz yz2 xz xz2 z z2

xz xz z xyz xz2 x yz z2 1 xyz2 xy yz2 y
xz2 xz2 z2 xyz2 x xz yz2 1 z yz2 xyz y yz
yz yz xyz z yz2 y xz xyz2 xy z2 1 xz2 x
yz2 yz2 xyz2 z2 y yz xz2 xy xyz 1 z x xz
xyz xyz yz xz xyz2 xy z yz2 y xz2 x z2 1
xyz2 xyz2 yz2 xz2 xy xyz z2 y yz x xz 1 z

Table 3: G3 =< x, y, a >, x3 = y2 = a2 = 1, yx = x2y, Z(G) =< a >
· 1 x x2 y a xy x2y xa x2a ya xya x2ya

1 1 x x2 y a xy x2y xa x2a ya xya x2ya
x x x2 1 xy xa x2y y x2a a xya x2ya ya
x2 x2 1 x x2y x2a y xy a xa x2ya ya xya
y y x2y xy 1 ya x2 x x2ya xya a x2a xa
a a xa x2a ya 1 xya x2ya x x2 y xy x2y
xy xy y x2y x xya 1 x2 ya x2ya xa a x2a
x2y x2y xy y x2 x2ya x 1 xya ya x2a xa a
xa xa x2a a xya x x2ya ya x2 1 xy x2y y
x2a x2a a xa x2ya x2 ya xya 1 x x2y y xy
ya ya x2ya xya a y x2a xa x2y xy 1 x2 x
xya xya ya x2ya xa xy a x2a y x2y x 1 x2

x2ya x2ya xya ya x2a x2y xa a xy y x2 x 1

Table 4: G4 =< x, y >, x3 = 1, y2 = a, yx = x2y, Z(G) =< a >
· 1 x x2 y y2 y3 xy xy2 xy3 x2y x2y2 x2y3

1 1 x x2 y y2 y3 xy xy2 xy3 x2y x2y2 x2y3

x x x2 1 xy xy2 xy3 x2y x2y2 x2y3 y y2 y3

x2 x2 1 x x2y x2y2 x2y3 y y2 y3 xy xy2 xy3

y y x2y xy y2 y3 1 x2y2 x2y3 x2 xy2 xy3 x
y2 y2 xy2 x2y2 y3 1 y xy3 x xy x2y3 x2 x2y
y3 y3 x2y3 xy3 1 y y2 x2 x2y x2y2 x xy xy2

xy xy y x2y xy2 xy3 x y2 y3 1 x2y2 x2y3 x2

xy2 xy2 x2y2 y2 xy3 x xy x2y3 x2 x2y y3 1 y
xy3 xy3 y3 x2y3 x xy xy2 1 y y2 x2 x2y x2y2

x2y x2y xy y x2y2 x2y3 x2 xy2 xy3 x y2 y3 1
x2y2 x2y2 y2 xy2 x2y3 x2 x2y y3 1 y xy3 x xy
x2y3 x2y3 xy3 y3 x2 x2y x2y2 x xy xy2 1 y y2
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Table 5: G6 =< x, y >, x3 = a, y2 = a2 = 1, yx = x5y, Z(G) =< a >
· 1 x x2 x3 x4 x5 y xy x2y x3y x4y x5y

1 1 x x2 x3 x4 x5 y xy x2y x3y x4y x5y
x x x2 x3 x4 x5 1 xy x2y x3y x4y x5y y
x2 x2 x3 x4 x5 1 x x2y x3y x4y x5y y xy
x3 x3 x4 x5 1 x x2 x3y x4y x5y y xy x2y
x4 x4 x5 1 x x2 x3 x4y x5y y xy x2y x3y
x5 x5 1 x x2 x3 x4 x5y y xy x2y x3y x4y
y y x5y x4y x3y x2y xy 1 x5 x4 x3 x2 x
xy xy y x5y x4y x3y x2y x 1 x5 x4 x3 x2

x2y x2y xy y x5y x4y x3y x2 x 1 x5 x4 x3

x3y x3y x2y xy y x5y x4y x3 x2 x 1 x5 x4

x4y x4y x3y x2y xy y x5y x4 x3 x2 x 1 x5

x5y x5y x4y x3y x2y xy y x5 x4 x3 x2 x 1

Table 6: G6 =< x, y >, x3 = y2 = a, yx = x5y, a2 = 1 Z(G) =< a >
· 1 x x2 x3 x4 x5 y xy x2y x3y x4y x5y

1 1 x x2 x3 x4 x5 y xy x2y x3y x4y x5y
x x x2 x3 x4 x5 1 xy x2y x3y x4y x5y y
x2 x2 x3 x4 x5 1 x x2y x3y x4y x5y y xy
x3 x3 x4 x5 1 x x2 x3y x4y x5y y xy x2y
x4 x4 x5 1 x x2 x3 x4y x5y y xy x2y x3y
x5 x5 1 x x2 x3 x4 x5y y xy x2y x3y x4y
y y x5y x4y x3y x2y xy x3 x2 x 1 x5 x4

xy xy y x5y x4y x3y x2y x4 x3 x2 x 1 x5

x2y x2y xy y x5y x4y x3y x5 x4 x3 x2 x 1
x3y x3y x2y xy y x5y x4y 1 x5 x4 x3 x2 x
x4y x4y x3y x2y xy y x5y x 1 x5 x4 x3 x2

x5y x5y x4y x3y x2y xy y x2 x 1 x5 x4 x3

Table 7: G7 =< x, y, z >, x2 = y3 = z2 = 1, yx = xzy, xz = zx, yz = xy,
Z(G) = {1}

· 1 x z xz y y2 xy xy2 zy zy2 xzy xzy2

1 1 x z xz y y2 xy xy2 zy zy2 xzy xzy2

x x 1 xz z xy xy2 y y2 xzy xzy2 zy zy2

z z xz 1 x zy zy2 xzy xzy2 y y2 xy xy2

xz xz z x 1 xzy xzy2 zy zy2 xy xy2 y y2

y y xzy xy zy y2 1 xzy2 xz xy2 x zy2 z
y2 y2 zy2 xzy2 xy2 1 y z zy xz xzy x xy
xy xy zy y xzy xy2 x zy2 z y2 1 xzy2 xz
xy2 xy2 xzy2 zy2 y2 x xy xz xzy z zy 1 y
zy zy xy xzy y zy2 z xy2 x xzy2 xz y2 1
zy2 zy2 y2 xy2 xzy2 z zy 1 y x xy xz xzy
xzy xzy y zy xy xzy2 xz y2 1 zy2 z xy2 x
xzy2 xzy2 xy2 y2 zy2 xz xzy x xy 1 y z zy
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Table 8: G8 =< x, y, z >, x2 = y3 = z2 = 1, yx = zy, xz = zx, yz = xzy,
Z(G) = {1}

· 1 x z xz y y2 xy xy2 zy zy2 xzy xzy2

1 1 x z xz y y2 xy xy2 zy zy2 xzy xzy2

x x 1 xz z xy xy2 y y2 xzy xzy2 zy zy2

z z xz 1 x zy zy2 xzy xzy2 y y2 xy xy2

xz xz z x 1 xzy xzy2 zy zy2 xy xy2 y y2

y y zy xzy xy y2 1 zy2 z xzy2 xz xy2 x
y2 y2 xzy2 xy2 zy2 1 y xz xzy x xy z zy
xy xy xzy zy y xy2 x xzy2 xz zy2 z y2 1
xy2 xy2 zy2 y2 xzy2 x xy z zy 1 y xz xzy
zy zy y xy xzy zy2 z y2 1 xy2 x xzy2 xz
zy2 zy2 xy2 xzy2 y2 z zy x xy xz xzy 1 y
xzy xzy xy y zy xzy2 xz xy2 x y2 1 zy2 z
xzy2 xzy2 y2 zy2 xy2 xz xzy 1 y z zy x xy
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