CREATIVE MATH.
14 (2005), 00 - 00

A Java implementation of the SPIHT coder

OvIDIU COSMA AND VASILE LUPSE

ABSTRACT. This article presents a Java implementation of one of the best coding algorithms for
the subbands of images. The SPIHT (Set Partitioning in Hierarchical Trees) algorithm performs
a progressive coding of the transformed images, speculating the correlation between the DWT
coefficients, with a data structure called zerotree.

1. INTRODUCTION

Some of the best coding algorithms for image subbands speculate the correlations
between the DWT coefficients with a data structure called zerotree. A zerotree is
a quad-tree with all the nodes smaller or equal with the root. A zerotree that
contains only insignificant coefficients, can be coded with a single symbol, and will
be completed with zeros by the decoder. Thus the correlations between the DWT
coefficients in successive subbands can be efficiently speculated. EZW (Embedded
image coding using Zerotrees of Wavelet coefficients) [1],[4] is the first algorithm
based on zerotrees. EZW performs a progressive coding of the transformed image
into an embedded code, which has the property that all the encodings of the same
image at lower bit rates are embedded in the beginning of the bit stream for the
target bit rate. The coding process can be stopped at any bit rate, or it can be
continued until the coefficients of the DWT are represented with a precision however
high.

2. THE SPIHT ALGORITHM

The SPIHT algorithm codes an image in several passes. Each of them has an
associated threshold p. For the first pass, p is initialized with the largest power of
two, which is smaller or equal with the largest DWT coefficient. At each of the
passes, the coefficients whose absolute values reach or exceed the threshold become
significant. They are moved in a List of Significant Coefficients (LSC), and then
the threshold p is halved. The process is ended when the bit rate reaches a target
value.

The SPIHT coding algorithm is based on the following data structures:

LIS (List of Insignificant Sets) that contains the roots of all the zerotrees, LIP
(List of Insignificant Pixels) that contains insignificant coefficients that do not be-
long to any of the zerotrees and LSP (List of Significant Pixels) that contains
coefficients that became significant at the current pass, or at one of the previous
passes.

Received: 18.05.2005. In revised form: 20.06.2005.
2000 Mathematics Subject Classification. 94A08.
Key words and phrases. Image compression, coding of image subbands.

1

2 Ovidiu Cosma and Vasile Lupse

The LIS and the LIP are initialized with all the coefficients of the first subband.
At each pass, the LIP and the trees in the LIS are scanned for significant coefficients.
If a significant coeflicient is found in the LIP, it is moved to the LSP. The trees in
the LIS that contain one or more significant coefficients are divided into subtrees
with all the coefficients smaller than the current threshold p. The coefficients that
remain outside the new zerotrees are placed in the LIP or in the LSP if they are
smaller respectively larger than p.

The SPIHT algorithm is described in detail in [1],[2],[3].

3. THE CODING APPLICATION

The image subband coding is performed by the codeImage method of the SPIHT
class. The image data is taken from the unidimensional array tab, and the resulting
code is written to the output stream dos. The List class implements a simple linked
list to hold the LIS. The elements of the list are of type Node.

package compresie;

import java.io.*;

class SPIHT{

—

int dim;//side of the image

float bpp;//keeps the target bitrate in bits per pixel

int lungCod;//code length = bpp*dim*dim

float[] tab;//transformed image (the DWT coefficients)

float[] LIP;//List of Insignificant Pixels

float[] LSP;//List of Significant Pixels

List LIS;//List of insignificant sets

int nrLIP, nrLSP;//number of elements in the LIP and LSP

float n;//current threshold

DataOutputStream dos;//Stream the image code will be written to

SPIHT (float[] tab, float bpp, int dim, DataOutputStream dos){

/]

//constructor allocates memory and initializes the fields

this.dos = dos;

//length of the code at the target bitrate

lungCod = (int)(bpp*dim*dim);

this.tab = tab; this.dim = dim; this.bpp = bpp;

LIP = new float[dim*dim]; LSP = new float[dim*dim];

LIS = new List();

nrLIP = 0; nrLSP = 0;

}//end of constructor

boolean SD(int i, int j){

/]

//verifies if the quadtrees with the roots in the direct

//descendents of coefficient(i,j) are zerotrees

return (i<dim/2 && j<dim/2) && (genTree(2%*i, 2%j) ||

genTree(2*i, 2*j+1) || genTree(2*i+1, 2%j) || genTree(2¥i+1, 2*j+1));

}//end of SD

A Java implementation of the SPIHT coder

boolean SL(int i, int j){
/1
//verifies if the quadtrees with the roots in the descendents of the
//descendents of coefficient(i,j) are zerotrees

return (i<dim/2 && j<dim/2) && (SD(2%i, 2%j) ||

SD(2*i, 2*j+1) || SD(2*i+1, 2*j) || SD(2*i+1, 2%j+1));

}//end of SL

boolean genTree(int i, int j){

/] -

//verifies if the quadtree with the root in coefficient(i,j) is a //zerotree
if(Math.abs(tab[dim*i+j]) >= n)

return true;

else

return SD(ij);

}//end of genTree

float retMax(){

/1—
//computes the initial threshold

float max = 0;

for(int i=0; i<dim*dim; i++)

if(Math.abs(tab[i])>max)

max = Math.abs(tab[i]);

float power = (float)Math.floor(Math.log(max)/Math.log(2));
return (float)Math.pow(2,power);

}//end of retMax

void treatCoef(int k, int I)throws EndCoding, I0Exception{
/]
//code the coefficient at position (k,l)

float coef = tab[dim*k+l];

if(Math.abs(coef) >= n){

putBit(true);//code SN(k,1)=1

LSP[nrLSP++] = Math.abs(coef)-n;//add coefficient(k,l) to the LSP
putBit(coef < 0);//code the sign of the coefficient

Yelse{

putBit(false);//code SN(k,I)=0

LIP[nrLIP++] = coef;

}

}//end of treatCoef

void codelmage()throws |OException, EndCoding{

noBitsCodif = 0;

//number of coefficients added to the LSP at the previous passes
int noLSPPrev = 0;

n = retMax();//initialize the threshold

/ /write the file header

dos.writelnt(dim);//side of the image

4 Ovidiu Cosma and Vasile Lupse

dos.writeFloat(tab[0]);//general average

dos.writeFloat(n);//initial threshold

dos.writeFloat(bpp);//encoding bitrate

//—step 1: Initialization

//Initialize the LIP

LIP[nrLIP4+] = tab[1];

LIP[nrLIP++] = tab[dim];

LIP[nrLIP++] = tab[dim+1];

//Initialize the LIS

LIS.add(0,1,’A’); LIS.add(1,0,’A"); LIS.add(1,1,'A’);

do{

//Step2: Sort

for(int i=0; i<nrLIP; i++)

//verifies if the element vas not eliminated from LIP

if(LIP[i] != Float.POSITIVE_INFINITY)

if(Math.abs(LIP[i]) >= n){

putBit(true);

//move the coefficient to the LSP

LSP[nrLSP+-+] = Math.abs(LIP[i])-n;

//The previous bit 1 indicates the most significant bit of the //coefficient. This
coefficient will not be processed in the refinement //step. Next code the sign of the
coefficient.

putBit(LIP[i] < 0);

//disables the coefficient in the LIP

LIP[i] = Float.POSITIVE__INFINITY;

Yelse

putBit(false);/ /the coefficient remains insignificant

boolean nextBit;//holds the next bit of the code

//process the LIS

for(LIS.start(); LIS.current = null; LIS.next()){

if(ILIS.current.valid)

continue;/ /step over the eliminated sets

if(LIS.current.type == "A"){

nextBit = SD(LIS.current.i, LIS.current.j);

putBit(nextBit);

if(nextBit){

//process the descendents of (i,j)

treatCoef(2*LIS.current.i, 2*¥LIS.current.j);

treatCoef(2*LIS.current.i+1, 2*LIS.current.j);
treatCoef(2*LIS.current.i, 2*LIS.current.j+1);
treatCoef(2*LIS.current.i+1, 2*LIS.current.j+1);
if(4*LIS.current.i+3<dim && 4*LIS.current.j+3<dim){

//if the direct descendents of the current node have

//descendents

LIS.current.type = 'B’;

LISTypeB();

A Java implementation of the SPIHT coder

Yelse

LIS.current.invalidate();

}//end if(nextBit)

}//end if(LIS.current.type == "A")

else //the set is of type B

LISTypeB();

}//end the process of LIS

//step3: Refinement

for(int i=0; i<noLSPPrev; i++)

if(LSP[i] >= n){

putBit(true);

LSP[i] -= n;

Yelse

putBit(false);

noLSPPrev = nrLSP;//No of coefficients that will be processed at
//the next crossing of step 3

//step 4: Update the threshold

n/=2

Ywhile(true);

}//end of codelmage

void LISTypeB()throws EndCoding, IOException{

/1
//code a set of type B

boolean nextBit = SL(LIS.current.i, LIS.current.j);
putBit(nextBit);

if(nextBit){

LIS.add(2*LIS.current.i, 2*¥LIS.current.j, 'A’);
LIS.add(2*LIS.current.i+1, 2*LIS.current.j, 'A’);
LIS.add(2*LIS.current.i, 2*¥LIS.current.j+1, 'A’);
LIS.add(2*LIS.current.i+1, 2*¥LIS.current.j+1, 'A’);
LIS.current.invalidate();

}

}//end of LISTypeB

int noBitsCodif;//length of the code

byte byteCod;//holds maximum 8 bits of the code
void putBit(boolean theBit)throws EndCoding, I0Exception{
/] -
//puts the next bit in the image code

byte mask = (byte)(1 « 7 - noBitsCodif % 8);
if(theBit)

byteCod |= mask;

else

byteCod &= ~mask;

noBitsCodif++;

if(noBitsCodif % 8 == 0){
dos.writeByte(byteCod);

Ovidiu Cosma and Vasile Lupse

if (noBitsCodif >= lungCod){
dos.close();
throw new EndCoding("End of image coding");

}

}
}//end of putBit

}//end of class SPIHT
class EndCoding extends Exception{

public GataCitBiti(String s){ super(s); }

}//end class EndCoding

class List{

/[——

Node first = null, last = null, current = first;

void add(int i, int j, char tip){//add a new node in the list
Node a = new Node(i,j,tip,last);

last = a;

if(first == null)

first = last;//add the first node in the list

}

void start(){ current = first; }//select the first node in the list
Node next(){//select the next node in the list

if(current '= null)

current = current.next;

return current;

}

}//end of class List

class Node{

/[——

int i,j;//hold the position of the root of the set
char type;//type of the set (A or B)

Node next;//link to the next node in the list
boolean valid;

Node(int i, int j, char type){

this.i = i; this.j = j; this.type = type;

next = null; valid = true;

}

Node(int i, int j, char type, Node last){
this(i,j type);

if(last != null)

last.next = this;

void invalidate(){ valid = false; }
}//end of class Node

A Java implementation of the SPIHT coder 7

4. CONCLUSIONS

The following example codes the square image of side DIM, whose DWT coef-
ficients are in array Y, at bpp bits per pixel, and places the resulting code in file
ImageCode.

try{

DataOutputStream dos = new DataOutputStream(new BufferedOutputStream(

new FileOutputStream("ImageCode")));

new SPIHT(Y,bpp,DIM,dos).codelmage();

catch(IOException e){}

catch(EndCoding g){}

The following graph illustrates the processing speed of the implementation. A
1,4GHz PIV CPU was used for the tests. The test images were square, with the
side of 512 pixels.

REFERENCES

[1] Cosma O., Contributions to the Coding of Image Subbands, PhD Thesis, Polytechnic Univer-
sity, Bucharest 2003

[2] Cosma O., The Implementation of a SPIHT Codec, Buletinul $tiintific al Universitatii din
Baia Mare, seria B, Matematici — Informatici, 2002

[3] Said A., Pearlman W. A., A New Fast and Efficient Image Codec Based on Set Partitioning
in Hierarchical Trees, IEEE Transactions on Circuits and Systems for Video Technology, vol.
6, June 1996

[4] J. Shapiro M., Embedded Image Coding Using Zerotrees of Wavelet Coefficients, IEEE
Transactions on Signal Processing, vol. 41 no. 12, 1993

NorTH UNIVERSITY OF BalaA MARE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
VicToRriEl 76, 430122 BaiaA MARE, RoMmaNIA

E-mail address: cosma@alphanet.ro

E-mail address: vasilelupse@yahoo.co.uk

