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Richard Dedekind’s theory of sets

Lech Gruszecki

Abstract. In this paper a short outline of Richard Dedekind’s theory of sets is given.

George Cantor is considered to be the founder of the theory of sets. In a number
of his works, especially articles from the 1890s he introduced many terms essential
for this theory and developed it into a complex science (cf. [1]).

Cantor was not, however, the only mathematician of his times that noticed the
importance of the theory of sets for mathematics. Some other scientists understood
the need for a new strong foundation for mathematics. One of them was Richard
Dedekind, who in the introduction to his small but important book Was sind und
was sollen die Zahlen? made an explicit statement that logic was the appropriate
foundation for mathematics (cf. [2]; also [4], p. 81–116, 218 – 223 and 241 – 256).
He claimed that arithmetic, algebra or analysis were only parts of logic (Teiles der
Logik), however logic that was understood much wider than it is today.

Having read Was sind und was sollen die Zahlen?, one can easily see that the
construction of natural numbers, presented by Dedekind and being a complement
to the programme of reducing analysis to arithmetic of natural numbers formulated
earlier by Dirichlet, is based on set theory.

Before the content of Dedekind’s book is presented, it is worth taking a closer
look at his philosophical ideas. Although he did not describe himself as a follower
of some philosophical school, it is possible to identify his philosophical credo, which
he remained faithful to, on the basis on his statements.

As most German thinkers of the 19th century, Dedekind was heavily influenced
by Kant. It does not mean, however, that he accepted Kant’s beliefs without reser-
vations, but more that he was immersed in a philosophical space, defined by Kant.
Dedekind rejected Kant’s concept of view (Anschauung) and a priori forms of sen-
suality (Sinnlichkeit), thanks to which an object is formed. It is not surprising
though, as non-Euclidean geometry created half a century before had undermined
the philosophy of intellectual cognition, created by Kant. Dedekind did not reject,
however, the concept of mathematical a priori, but moved it to the intellectual
sphere (Verstand). Mathematical concepts should therefore be created, according
to Dedekind, with the help of a priori intellect functions, which just like intel-
lect categories in Kant’s presentation, were to synthesise the objects of cognition,
presenting values available to our view as new units. So the foundations of mathe-
matics should be sought in transcendental logic, which, according to Kant, should
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deal with a priori intellect functions. Interestingly enough, Kant included quanti-
tative concepts such as unit(y), multitude and entirety to the intellect, and not to
the sensuality.

Dedekind did not fully develop his general philosophical theories; for mathemat-
ics, however, he was willing to base it on broadly understood logic. Contrary to
Peirce, it was quite natural for him to include set theory in logic. This can be ex-
plained by the fact that Dedekind considered ranges of notions and ranges of terms
as natural objects of logic. He was convinced at the same time that the whole math-
ematics could be reduced to logic, which makes him one of the main forerunners of
logicism.

Was sind und was sollen die Zahlen? was published in 1888, but its first draft
version was written between 1872 and 1878 and since then the ideas presented there
had been familiar to scientists who were in close contact with Dedekind. As it can
be seen, Dedekind’s theory of sets came into being more or less at the time when
Cantor’s first works concerning theory of sets were published. Therefore, Dedekind’s
book can be considered as some version of this theory.

While Cantorian theory encompasses arithmetic of transfinite numbers and he
seeks to justify his concepts concerning infinity (from the point of view close to
Plato’s), Dedekind limits his philosophical commentary considerably and his theory
of sets includes only what is absolutely necessary to define arithmetic of natural
numbers. It should be noted that Dedekind’s presentation is much more modern in
comparison with the one of Cantor. Theorems and commentary notes in Dedekind’s
book form logically ordered sequence and in this respect it can be compared to The
Elements by Euclid, though it lacks axioms and postulates. The fundamentals of
set theory are explained by reference to elementary, in the opinion of the author,
intuitions connected with cognitive functions of the mind.

Let us have a closer look at Dedekind’s book now. In the first chapter entitled
Systems of Elements, he introduces fundamental concepts of set theory. In the first
passage he writes:

An object (Ding) is anything one can think of. To talk about objects,
they are designated by means of symbols, for example letters. One
can talk about an object “a”, or simply about “a”, while in fact by
“a” one understands a designated object, not just the letter “a”. An
object is entirely defined by everything one can say about it or think
about it. An object “a” is the same as “b” (is identical with “b”),
and “b” is the same as “a” if anything that can be thought of “a”,
can also be thought of “b”, and everything that applies to “b” can
also be thought of “a”. The fact that “a” and “b” are only symbols
or names of the same object shall be expressed by means of a = b
as well as b = a. [...]. If there is no such correspondence between
objects designated as “a” and “b”, then “a” and “b” are called
different; “a” is a different object from “b” and “b” is a different
object from “a”, if there is some characteristic which describes one
of these two objects and is not true about the other. (cf. [2], p. 1)



Richard Dedekind’s theory of sets 111

In the next passage, Dedekind introduces the key terms for his theory:

It often happens that different objects a, b, c . . . , for some reason
considered from the common point of view, are put together in our
mind; then one says that they form some system (System) S; ob-
jects a, b, c . . . are called elements of this system S (die Elemente),
if they are contained in S; or in other words S consists of these
elements. Such a system (or entirety [Inbegriff, Gesamtheit ] or
manifold [Mannigfaltigkeit ]) is itself an object, as it is something
we can think of (cf. Section 1); S is completely defined if one can
attribute each object to be (or not) an element of S. System S is
therefore the same as system T, which is designated as S =T, if
each element of S is also an element of T and each element of T
is an element of S. (cf. [2], p. 1 – 2).

As it can be seen, the term “system” is in fact equivalent to the term “set”.
And the above fragment can be considered as one of the first versions of a later
formulated extensionality axiom.

In the next part of section 2, Dedekind allows for the existence of a system
consisting of just one element (he does not seem to distinguish, however, between
an object a and a system in which a is the only element) and at the same time does
not consider an empty system, although, as he writes, it can be convenient in some
other considerations to take it into account.

In section 3, in explanatory notes (Erklärung), the concept of a part of system
(Teil) is described. A system A is called a part of a system S if each element A is
also an element of S. In such a case Dedekind uses the following notation

A ≺ S or S � A.

If A consists of only one element S, symbols are in fact identical: s ≺ S. Let
us add that Dedekind introduces the concept of the proper part in section 6 of the
first chapter.

On the basis of definitions presented above, Dedekind formulates basic properties
of the relation “≺”.

He states for example that

(i) A ≺ A (section 4)
(ii) A ≺ B and B ≺ A, then A = B (section 5)
(iii) A ≺ B and B ≺ C, then A ≺ C (section 7).

The first chapter includes two more fundamental definitions: the sum of systems
and the product of systems (section 8 and 17).

By the sum of systems A,B, C, . . . (zusammengezetzen System), he understands
a system M(A,B,C...), consisting of the elements that belong to at least one of the
systems A,B, C, . . ..
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The product of systems A,B,C . . . (Gemeinheit der Systeme A,B,C,. . . ) is des-
ignated by means of G(A,B, C...) and is understood as the biggest common part of
systems A,B,C, . . ..

The second chapter of Dedekind’s book is devoted to transformation of systems
(on other systems). In the explanation included in passage 21, the author writes:

By transformation (Abbildung) ϕ of a system S, we understand the law ac-
cording to which for each defined element s from S there is a defined thing, called
an image (Bild) s, designated as ϕ(s) (cf. [2], p. 5).

It is typical that Dedekind considers it unnecessary to use a different letter as
a symbol for range of transformation ϕ (the term “range” is not used). The range
is completely defined by S and by ϕ; that is why it is designated as ϕ(S). If the
transformation ϕ is known, Dedekind uses s′ and S′ instead of ϕ(s) and ϕ(S).

Chapter 3 brings further fundamental definitions. In section 26, the author
defines a similar transformation (ähnlich), or in other words, one-to-one transfor-
mation (deutlich) as the one in which different elements of system S are assigned
to different images.

Similar transformations allow to define similar systems. Two systems R and S are
similar if there is a similar transformation of system S to the system R, or in other
words, a similar transformation ϕ for which ϕ(S) = R. In Cantorian terminology,
similar systems are ”equinumerable (abzählbar)” sets. Dedekind, unlike Cantor,
does not develop the theory of similar systems, which would be analogous to the
theory of power sets and the theory of cardinal numbers, formulated by Cantor. He
notices, however, that all systems can be divided into classes (Klassen) consisting
of systems similar to one another. Each class can be represented by some randomly
chosen system.

The key concept for further discussion is the concept of a chain (Kette), intro-
duced in Chapter 4. Dedekind considers here the transformation of a system into
itself, that is transformation ϕ when ϕ(S) ≺ S. A chain is any part K of a system
S if ϕ(K) ≺ K (section 37). Obviously, whether K is or is not a chain depends on
the type of transformation ϕ.

The main conclusion of Chapter 4 is the principle of complete induction. It is,
however, different from the one that we commonly associate with natural num-
bers. Natural numbers have not been defined at all at this stage of considerations.
Dedekind will do it later, formulating the principle of complete induction once again,
this time for natural numbers.

Complete induction, as described in section 59, is presented in the language of
Dedekind’s set theory. It goes as follows:

If ϕ0(A) or alternatively A0, if transformation ϕ is known, denotes the common
part of all chains of a given system S, containing A (ϕ0(A) is a chain as well), then
ϕ0(A) is a part of any system Σ included in S if and only if

•(i) A ≺ Σ
(ii) for any element s belonging at the same time to ϕ0(A) and Σ, ϕ(s) belongs

to Σ.
The above theorem allows us to decide if some property W is shared by all

elements of a chain ϕ0(A). To do that, it is possible to prove that by complete
induction
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a) all elements of A have some property W
b) if an element a belonging to ϕ0(A) has the property W , then an element ϕ(a)

has this property as well.

As we will see, complete induction presented in this way is a strong foundation for
arithmetic of natural numbers.

Chapter 5 of Dedekind’s book is devoted to the presentation of finite and infinite
systems. Section 64 contains a famous definition of an infinite system, which states
that a system S is called infinite if it is in one-to-one correspondence with a proper
part of itself. Otherwise, it is called a finite system. It goes without saying that
Dedekind does not use an axiom of infinity, a part of Zermelo-Fraenkel set theory.
If the existence of infinite systems was not the subject of the proper axiom, then it
had to be proved in some way. In section 66, Dedekind states that infinite systems
exist and then he proves it, just like Bolzano, by invoking the nature of the mind.
(Bolzano at this point invoked the infinite nature of God’s mind).
The proof: My universe of thoughts (meine Gedankenwelt), i.e. the entirety S of all
objects I can think of, is infinite. And indeed if s is an element of S, then similarly
the thought s’ that s is an object of my thought, is itself an element of S. If s’ is
treated as an image ϕ(s) of an element s, then the transformation ϕ of a system S is
characterised by the fact that an image S’ is a part of S; namely S’ is the proper part
of S, because there are elements in S (for instance my own I (mein eigenes Ich))
which are different from all other thoughts s’ and that is why they do not belong to
S’. Ultimately it becomes clear that if a, b are different elements of S, then their
images a’, b’ are different as well, so the transformation ϕ similar (one-to-one).
Consequently S is infinite; q.e.d. (cf. [2], p. 14).

From a modern point of view, the above “proof” is a confusion of some notions. It
is, in fact, philosophical reasoning, which only uses some elements of mathematics.

Chapter 6 deals with so called simply infinite systems (einfach unendlich). These
systems form the direct foundation on which Dedekind builds his arithmetic of nat-
ural numbers. A simply infinite system is defined as a system N , which when
transformed in itself, is a chain ϕ(1) of some element designated as 1, and which
element does not belong to ϕ(N). So N is a simply infinite system if:

(i) ϕ(N) ≺ N ,
(ii) N = ϕ0(1),
(iii) 1 does not belong to ϕ(N),
(iv) transformation ϕ is similar.

In section 72 Dedekind shows that each infinite system contains a simply infinite
system as its part. This statement corresponds to a well-known fact from Cantor’s
theory of cardinal numbers, which states that the smallest transfinite number is ℵ0.

An explanatory note from section 73 of Chapter 6 is one of the most important
in the whole book as it contains a definition of natural numbers. This definition is
based on an important characteristic of simply infinite systems, which are, in fact,
ordered by transformation ϕ.
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Dedekind writes:
• If considering a simply infinite system N, ordered by a transforma-

tion ϕ, one entirely ignores the specific nature of its elements, and
takes into consideration only the fact that these elements are dif-
ferent from one another and that they correspond to one another by
transformation ϕ, which orders them, then these elements shall be
called natural numbers, or ordinal numbers, or simply num-
bers (cf. [2], p. 17).

In this way a system of natural numbers in which transformation ϕ establishes
some ordering has been defined. In this system natural numbers can be exchanged:
1, ϕ(1), ϕ(ϕ(1)) etc.

As it can be seen, ϕ is in fact an equivalent to a successor in Peano’s theory of
natural numbers.

The next part of Dedekind’s book, less interesting from our point of view because
the author seizes to use precise terms from set theory, corresponds in many respects
with Peano’s concepts concerning arithmetic of natural numbers. In the next few
chapters, Dedekind defines addition, multiplication and involution of natural num-
bers by means of induction; he also describes the relations of ordering in a set of
natural numbers. In the last chapter, he considers finite systems and the number
of elements in finite systems (Anzahlen).

Was sind und was sollen die Zahlen? is unquestionably the fullest presentation
of Dedekind’s set theory. Yet, his other works also contain elements of set theory.

A good example could be an article Über Zerlegungen von Zahlen durch ihre
größten gemeinsamen Teil from 1897 (cf. [3]). In § 3, which deals, as the author
states, with the combinations of natural numbers, two important operations on the
combinations have been defined: the sum (Summe) and the intersection (Durch-
schnitt). The meaning of these terms is the same as nowadays. To denote sum,
Dedekind uses +, while − is used to denote intersection.

The importance of operations is first illustrated by means of examples (cf. [3], p.
109).

So for combinations

α = 2347,
β = 1357,
γ = 1267,

Sums and intersections are the same

β + γ = 123567, α + γ = 123467, α + β = 123457,

β − γ = 17, γ − α = 27, α− β = 37.

Then, a series of identities concerning combinatorics is presented

α + β = β + α,

α− β = β − α,
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(α + β) + γ = α + (β + γ),
(α− β)− γ = α− (β − γ),

α + (α− β) = α,

α− (α + β) = α,

He notices also that there exists a distribute law of subtraction + in relation to
− and the other way round

(α− β) + (α− γ) = α− (β + γ),

(α + β)− (α + γ) = α + (β − γ).

In the next part of his article, the author extends operations + and − to more
general structures of algebra: modules, fields, Abelian groups and ideals. It is prob-
ably this algebraic perspective that makes Dedekind ignore a difference of sets; an
operation which lacks regular properties, as it is neither commutative nor associa-
tive. The concept of difference of sets was present in Boole’s algebra and Cantor’s
analytic considerations. It can be thus assumed that the source of this notion lies
in scientific research conducted in the 19th century within logic and mathematical
analysis.
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