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The method of characteristic values in testing
mathematical models

István Huba Atilla Sass

Abstract. Mathematical modeling of natural phenomena is frequently used by scientists.

Since mathematical models usually involve laborious computation, there is a real need for shortcut
methods testing the suitability of the chosen model in an early stage of the modeling. In this paper

we present and illustrate such a method, namely the method of characteristic values.

1. Introduction

When we construct a mathematical model in order to study a given natural
phenomenon or a given object in nature, we have to decide which physical laws we
will use. In the construction of our mathematical model we have to consider not
only universal lows but also certain very specific physical laws that characterize only
the given natural phenomenon. Choosing these specific physical laws represents the
key task in the construction of the mathematical model. To be sure that we made
a right choice, we may perform a test.

It is well known that equations of physics must satisfy the dimension analysis,
i.e. the dimensions on the left side of an equation must be exactly the same as on
the right side of the equation.

Let we consider such an ecuation

F (X1, X2, · · · , Xn) = G (X1, X2, · · · , Xn) (1)
where Xi, i ∈ 1, n are quantities expressed in physical units (m, kg, s etc.). Denoting

Xi = ai · xi, i ∈ 1, n (2)
where ai are constants having exactly the same dimensions as have Xi and xi are
the corresponding dimensionless quantities, from equation (1) results an equation
of the form

A · f (x1, x2, · · · , xn) = B · g (x1, x2, · · · , xn) (3)
where A and B are constants of the same dimensions. Taking

A

B
= 1 (4)

we deduce the simplified equation
f = g
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in the dimesionless quantities xi.
The dimensionless quantities xi will be of an order approximately equal with 1, so

the computation related to the previous equation will be much easier. Performing
similar simplifications as (4) for all equations that appear in our mathematical
model, we obtain a system of equations of the form (4) having as unknowns the
constants ai, i ∈ 1, n.

We will call the solution a0
i , i ∈ 1, n of this system the characteristic values of

the physical quantities Xi.
The order of characteristic values thus obtained must be close to the order of the

values of the quantities Xi used in the mathematical model. Otherwise we can be
sure that in our model we have considered some laws that are not suitable for the
given natural phenomenon, and therefore we have to change our model. By changing
the model at this moment we can avoid a large amount of useless computational
work.

In case that our model seems to be suitable, we have to solve the system of
simplified equations in dimensionless unknowns xi and then from the solution of
this system x0

i , i ∈ 1, n we obtain the physical solution

X0
i = a0

i x
0
i i ∈ 1, n (5)

that characterize the given phenomenon.
As a concrete example now we present a mathematical model of a superdense

star.

2. Mathematical modeling of a superdense star

2.1. Choosing the equations. For building super dense, spherical and without
rotation star models a system of differential equations is used
a) the state equations:

P = Af(x) (6)
and

ρ = Bx3 (7)
where

f(x) = x(2x2 − 3)(x2 + 1)1/2 + 3 ln[x + (x2 + 1)1/2] (8)

x is the degeneration parameter of an electronic or neutron gas [1], [2]. For a
degenerate electronic gas

A =
πm4

ec
5

3h3
(9)

B =
8πm3

ec
3H

3h3
µe (10)

and for a degenerate neutron gas

A =
m4

nc5

24π2}3
(11)
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B =
m4

nc3

3π2}3
(12)

b) the relativistic hydrostatic equilibrium equation

dP (r)
dr

= −G

(
ρ +

P

c2

)
M(r) + 4π

c2 P r3

r2
(
1− 2G

c2
M(r)

r

) (13)

and

c) the equation of mass conservation

dM(r)
dr

= 4πρr2 (14)

P and ρ represents the pressure and the density of stellar gas at the radius r,
M(r) is the mass of the star inner the radius r and

c = 2.99792458 · 108 ms−1 – velocity of light;

h = 2π} = 6.6260755 · 10−34 kgm2s−1 – Planck’s constant;

G = 6.6732 · 10−11 m3kg−1s−2 universal gravitational constant;

me = 9.1093897 · 10−31 kg – electron rest mass;

H = 1.6726231 · 10−27 kg – proton rest mass;

mn = 1.6749286 · 10−27 - neutron rest mass;

µe - average molecular mass per free electron = 2 for helium

For a star with spherical symmetry we have the boundary conditions:
at centre

r = 0 : x = x0, ρ = ρc , P = Pc , M(0) = 0
on the surface

r = R : x = 0 , ρ = 0 , P = 0 , M(R) = M

In a white dwarf star the material is degenerate electronic gas in a neutron star
degenerate neutron gas.

2.2. Reduction to dimensionless magnitudes. In order to facilitate the solving
of the system of equations (6), (7), (8), (13), (14) we can introduce the dimensionless
magnitudes m, η and χ, defined by the formulae:

M(r) = M0m , r = r0η , χ = (x2 + 1)1/2 (15)
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where M0 and r0 represent respectively the characteristic mass and the char-
acteristic radius expressed in kilograms and, respectively, in meters.

The equation (14) is transformed in

dm

dη
= Dx3η2 (16)

where the expression of D is:

D = 4πB
r3
0

M0
.

Taking D = 1, we get

M0 = 4πBr3
0 (17)

If we introduce the following notations:

E =
A

Bc2
, F =

4πGB

c2
r2
o (18)

from (13), (8), (6) and (15) results

df

dη
= −F

E

(x3 + Ef)(m + Efη3)

η2
(
1− 2Fm

η

) (19)

df

dη
= 8x3 dχ

dη
(20)

and from (19) and (20) result the equation:

dχ

dη
= − F

8E

(x3 + Ef)(m + Efη3)

x3η2
(
1− Fm

η

) (21)

If we choose

F

8E
= 1 (22)

we get the dimensionless system

dm

dη
= x3η2 (23)

dχ

dη
= − (x3 + Ef)(m + Efη3)

x3η2
(
1− 16Em

η

) (24)

x = (χ2 − 1)1/2 (25)
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f = x(2x2 − 3)(x2 + 1)1/2 + 3 ln[x + (x2 + 1)1/2] (26)

From (18) and (22) results for the characteristic radius r0

r0 =
(

2A

πGB2

)1/2

(27)

For the characteristic density ρ0 we have

ρ0 =
3M0

4πr3
0

= 3B (28)

2.3. Applications.

a) For a white dwarf star from relations (27), (17), (28), (9) and (10)
results

r0 = 3.88303 · 106m= 0.60948R⊕

M0 = 1.43422 · 1030kg= 0.72108 M�

ρ0 = 5.848101 · 109kgm−3

R⊕ is the terrestrial radius and M� the solar mass.
The characteristic density of a white dwarf star is ≈ 6.000.000 g/cm3.

b) For a neutron star (pulsar) from relations (27), (17), (28), (11) and
(12) we have

r0 = 4.191142 · 103m= 4.191142 km

M0 = 5.64633 · 1030kg= 2.83873 M�

ρ0 = 1.83033 · 1019kg/m3

These values concords with the real values for a white dwarf star and, respectively,
for a neutron star (pulsar).

The order of dimensionless variables η , f , χ , x, m is ∼ 1 and the system (23)-
(26) is handy.
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