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Mathematical excursions in fractal world

Anna Soós

Abstract. In this article we will rewiev the existence and uniqueness results for fractal
sets. The fractals are sets having noninteger Hausdorff dimensions. In selfsimilar case this
dimension can be calculated using the similarity dimension.

”Mathematics, rightly viewed, possesses not only truth, but supreme beauty”
– Bertrand Russell, from The Study of Mathematics: Philosophical Essays

What is a fractal?
B. Mandelbrot:
A rough or fragmented geometric shape that can be subdivided in parts,

each of which is (at least approximately) a reduced/size copy of the whole.
Mathematical: A set of points whose fractal dimension is noninteger.

Traditionally, a line is thought of as 1-dimensional object; a plane as a
2-dimensional object and a prism as a 3-dimensional object. Dimensions are
seen as having integer values. The term ’fractal’ suggests the ideea that some
objects have a ’fractional’ dimension. In this article we will take an excursion
in so called ”fractal geometry”. Mandelbrot’s fractal geometry provides a
mathematical model for many complex forms found is nature such as shapes
of coast lines, mountains, galaxy clusters, and clouds.

1. Basic notions

Let X be a nonempty set and d a metric on X. The classical example is the
Euclidian space Rn with the Euclidian metric d(x, y) =

√∑n
i=1(xi − yi)2.

Let f : X → X and let x0 ∈ X. Define

x1 = f(x0)

x2 = f(x1) = f ◦ f(x0) = f2(x0)

. . . . . .
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xn = f(xn−1) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times.

(x0) = fn(x0).

Let (X, dX) and (Y, dY ) be metric spaces. A map ϕ : X → Y is said to
be Lipschitz on X if

dY (ϕ(x), ϕ(y)) ≤ rdX(x, y)

for all x, y ∈ X, where r is a positive number called the Lipschitz constant
of ϕ.

The iterated function system (IFS) consists of a family of contractions
S := {ϕ1, ..., ϕm} on X. If there exists a set K such that

K = ∪u
i=1ϕi(K),

it is called the invariant set of the IFS.
Let (X, d) be a metric space. If ϕ : X → X is Lipschitz on X and the

Lipschitz constant is less then 1, then f is called a contraction with respect
to the metric d with contractivity ratio r. In particular, a contraction ϕ with
contraction ratio r is called a similitude if d(ϕ(x), ϕ(y)) = rd(x, y) for all
x, y ∈ X.

It is known from the calssical analysis the Banach’s contraction principle

Theorem 1.1. Let (X, d) be a complete metric space and let ϕ : X → X be
a contraction with respect to the metric d. Then there exists a unique fixed
point of ϕ, in other words, there exists a unique solution to the equation
ϕ(x) = x. Moreover, if x∗ is the fixed point of ϕ, then {ϕn(a)}n≥0 converges
to x∗ for all a ∈ X where ϕn is the n-th iteration of ϕ.

If A is a subset of X and r > 0, then the r neighbourhood of A is

Ar := {y : d(x, y) < r for some x ∈ A}.

Let C(X) the class of nonempty compact subsets of X.
The Hausdorff metric on C(X) is defined as

h(A,B) := inf{r : A ⊆ Br and B ⊆ Ar}.

On can show that the Hausdorff metric is a metric on C(X) and if (X, d) is
a complete metric space then (C(X), h) is also complete.

Now we can prove, following [4], the existence and uniquness of fractals:

Theorem 1.2. Let (X, d) be a complete metric space and let ϕi : X → X
be a contraction for i ∈ {1, 2, ...,m}, m ∈ N. Define S : C(X) → C(X) by

S(A) := ∪m
i=1ϕi(A).

Then S has a unique fixed point K. Moreover, for any A ∈ C(X), Sn(A)
converges to K as n →∞ with respect to the Hausdorff metric, where Sn is
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the n-th iterate of S and

h(Sn(A),K) ≤ rn

1− r
h(A,S(A)) → 0

as n →∞. Furthermore, if A ∈ C(X) is such that ϕi(A) ⊂ A for all i, then

K = ∩∞i=0S
i(A).

Proof. If A,B ∈ C(X) then

h(S(A),S(B)) = h(∪m
i=1ϕi(A),∪m

i=1ϕi(B)) ≤
≤ max

1≤i≤m
h(ϕi(A), ϕi(B)),

using the definition of metric h and noting that if the ε-neighbourhood
(ϕi(A))ε contains ϕi(B) for all i then (∪m

i=1ϕi(A))ε contains ∪m
i=1ϕi(B) and

vice versa. By the definition of contraction

h(S(A),S(B)) ≤ ( max
1≤i≤m

ri)h(A,B). (1.1)

Since max1≤i≤m ri < 1, the mapping S is a contraction on the complete
metric space (C(X), h). By the Banach’s contraction principle S has a unique
fixed point and moreover Sn(A) → K as n →∞. By iterating (1.1) it follows
that

h(Sn(A),K) ≤ ( max
1≤i≤m

ri)nh(A,K).

Thus Sn(A) converges to K at a geometric rate. In particular, if ϕi(A) ⊂ A
for all i, then S(A) ⊂ A, so that Sn(A) is a decreasing sequence of non-
empty compact sets containing K with intersection ∩∞i=0S

i(A) which must
equal K. �

This unique fixed point K ⊂ X is the invariant set of the IFS. Usually
it is a fractal.

2. Selfsimilar fractal sets

If the contractions are similarities, the attractor K is called selfsimilar,
if they are affine transformations, then K is called selfaffine. These sets
are frequently fractals.

Example 1. The middle-third Cantor set:
ϕ1, ϕ2 : R → R:

ϕ1(x) =
1
3
x ϕ2(x) =

1
3
x +

2
3
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Figure 1. The triadic Cantor dust

Example 2. The Sierpinski gasket
Let q1, q2, q3 the vertices of an equilateral tiangle.
ϕi : R2 → R2

ϕi(x) =
1
2
(x− qi) + qi, i = 1, 2, 3.

Figure 2. The Sierpinski gasket

Example 3. The Menger sponge
Begin with a cub of side 1. Subdivide it into 27 smaller cubes by trisecting

the edges. We will remove the center cub and the 6 cubes in the center of
the faces. That means 20 cubes remain. Continue in the same way with the
small cubes.

Computationally, it is very easy to reconstruct the invariant set K of a
given IFS. Let Ik the set of all k-term sequences (i1, ..., ik) with ij ∈ {1, ..., n}.
Plotting Sk(A) = ∪Ik

ϕi1(A) ◦ ϕi2(A) ◦ · · · ◦ ϕik(A) for a suitable k gives an
approximation to K. (See Figure 4.)

An alternative way of reconstructing K is to take any initial point x0,
and select a sequence ϕi1 , ϕi2 , ... independently at random from the given
contractions. Then the points defined by

xk = ϕik(xk−1), for k = 1, 2...

are indistinguishably close to K.
Better results will be obtained by weighting the probabilities of choosing

the ϕi. (See Figure 5.)
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Figure 3. The Menger sponge

Figure 4. The Sierpinski gasket

Figure 5. The Sierpinski gasket
.

3. Hausdorff measure and dimension

In this section we will introduce the notion of the Hausdorff measure and
dimension, and we will show how to calculate the Hausdorff dimension of
selfsimilar sets.
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Let (X, d) a metric space and A ⊂ X be a bounded subset. Let

Hs
δ(A) = inf

∑
i≥1

diam(Ei)s |A ⊂
⋃
i≥1

Ei, diam(Ei) ≤ δ

 ,

where the infimum is taken over all δ-covers of A. Also, we define

Hs(A) = lim sup
δ→0

Hs
δ(A).

Hs(A) is called the s-dimensional Hausdorff measure of A .
It is well-known thatHs is a complete Borel regular measure for any s > 0.

Theorem 3.1. [2] Let (X, d) be a metric space. For any A ⊂ X we have

sup{s |Hs(A) = ∞} = inf{s |Hs(A) = 0 }. (3.2)

Proof. First we show, for 0 ≤ s < t,

Ht
δ(A) ≤ Ht−s

δ (A) (3.3)

for any A ⊆ X. For, let A ⊆
⋃

i≥1 Ei and diam(Ei) ≤ δ for any i, then∑
i≥1

diam(Ei)t ≤
∑
i≥1

diam(Ei)t−sdiam(Ei)s ≤

≤ δt−s
∑
i≥1

diam(Ei)s

By the inequality (3.3), if s < t, then Hs(A) < ∞ implies Ht(A) = 0 and
also Hs(A) = ∞. �

Using this theorem we can give the notion of Hausdorff dimension.
The quantity given by the equality (3.2) is called the Hausdorff dimen-

sion of A, which is denoted by dimH(A).
The Hausdorff measure and the Hausdorff dimension depend on the metric

d.
Mandelbrot named fractal the set having noninteger Hausdorff dimen-

sion.
The first result concerning the Hausdorff dimension of selfsimilar fractal

sets is essentially due to Moran. In [4] Moran’s theorem and proof are
presented inthe language of iterated function system. In order to obtain the
formula of Hausdorff dimension of selfsimilar sets, one has to impose the
open set condition.

Assume that K is the invariant set of the IFS S = (ϕi, i = 1, ...,m) where
ϕi are similitudes with contractivities ri ∈ [0, 1), i = 1, ...,m. The IFS
satisfies the open set condition if there exists a nonempty bounded open
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set G ⊂ X such that
m⋃

i=1

ϕi(G) ⊆ G

and ϕi(G) ∩ ϕj(G) = ∅ for i 6= j.

Theorem 3.2. [3] Suppose that K is the invariant set of the IFS (X, (ϕi |i =
1, ...,m)) and the open set condition is satisfied. Then

dimHK = D,

where D is the unique positive solution of
m∑

i=1

rD
i = 1. (3.4)

Proof. Let n ∈ N. Since K is the invariant set, we have

K =
m⋃

i=1

ϕi(K).

This implies that
K =

⋃
i(n)∈Σn

ϕi(n)(K),

where Σ = {1, ...,m}N, Σn = {1, ...,m}{1,...,n} and i(n) = (i0, ..., in), ij ∈
{1, ...,m}. Since the composition of the similitudes ϕi(n) is a similitude with
contractivity ri(n) := ri0 ...rin , (3.4) implies that∑

i(n)∈Σn

(diamϕi(n)(K))D =
∑

i(n)∈Σn

(ri(n))
D(diamK)D =

= (
∑
i1

rD
i1 )...(

∑
in

rD
in)(diamK)D = (diamK)D.

Now given any ε > 0, one can always find an n ∈ N large enough so that

diamϕi(n)(K)D ≤ (max
i

ri)D ≤ ε.

Thus
HD

ε (K) ≤ (diamK)D,

and consequently
HD(K) ≤ (diamK)D.

To obtain a lower bound a measure ν on n-cylinders Zi(n) := {i ∈ Σ| i =
i(n)j} is introduced.

Define
νZi(n) := (ri(n))

D.
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It follows from (3.4) that

νZi(n) =
∑

i

νZi(n)i

and therefore νΣ = 1. This ν can be extended to a measure ν on K.
Let G the nonempty bounded open set whose existence is guaranteed by

the open set condition. The fact that every compact set converges to the
attractor K implies

K ⊇ S(K) ⊇ ... ⊇ Sn(K) → K.

Therefore
ϕi(n)G ⊆ ϕi(n)(K),

for all i(n), n ∈ N.
Now let B be a ball of radius r < 1 intersecting K. Let i ∈ Σ and let n

be the first integer for which

(min
i

ri)r ≤ ri(n) ≤ r.

Denote by Σ∗ the set of all such strings. For any i ∈ Σ there exists ex-
actly one integer n such that i(n) ∈ Σ∗. Since {ϕ1(G), ..., ϕm(G)} is dis-
joint, so is {ϕi(n)1(G), ..., ϕi(n)m(G)}, for all i(n) ∈ Σn. Hence, the collection
{ϕi(n)(G)|i(n) ∈ Σ∗} is disjoint, and therefore

K ⊆
⋃

i(n)∈Σ∗

ϕi(n)(K) ⊆
⋃

i(n)∈Σ∗

ϕi(n)(G).

Now choose two real numbers ρ1 and ρ2 such that G contains a ball of radius
ρ1r and is contained in a ball of radius ρ2r. If i(n) ∈ Σ∗, the set ϕi(n)(G)
contains a ball of radius ri(n)ρ1 and thus one of radius (mini ri)ρ1r and is
contained in a ball of radius ri(n)ρ2 and hence in one of radius ρ2r. Now
denote Σ∗∗ the set of all codes in Σ∗ for which ϕi(n)(G)∩B 6= ∅. Denote by
m the number of sets ϕi(G) that intersect B. The sum over the volumes of
the interior balls yields

m(ρ1r)n ≤ (1 + 2ρ2)nrn.

Then there are at most m = (1 + 2ρ2)nρ−1
1 (mini ri)−n codes in Σ∗∗..

Then
νB = νB ∩K ≤ ν(

⋃
i(n)∈Σ∗∗

Zi(n)).

Thus

νB ≤
∑

i(n)∈Σ∗∗

νZi(n) =
∑

i(n)∈Σ∗∗

νrD
i(n) ≤

≤
∑

i(n)∈Σ∗∗

rD ≤ mrD.
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As any set U is contained in a ball of radius diamU , νU ≤ m(diamU)D. So
HD(K) ≥ m−1 > 0, and thus dimH(K) = D. �

The similarity dimension can be used to compute the Hausdorff dimension
when the two coincide. For example the Cantor dust has similarity dimen-
sion log 2/ log 3, the Sierpinski gasket log 3/ log 2 and the Menger sponge
log 20/ log 3.

4. Fractal measure

It is usually more convenient to work with measures rather than sets. For
applications such as image compression it is convenient to consider grey-
scales.

Let (X, d) be a complete separable metric space.
A probabilistic iterated function system is a 2m-tuple

S := (p1, ϕ1, ..., pm, ϕm), m ≥ 1,

of positive real numbers pi such that
∑m

i=1 pi = 1 and of Lipschitz maps
ϕi : X → X. Let ri the Lipschitz constants of ϕi, i ∈ {1, ...,m}.

Denote M = M(X) the set of finite mass Radon measures on X with the
weak topology. If µ ∈ M , then the measure Sµ is defined by

Sµ =
m∑

i=1

piϕiµ,

where ϕiµ is the usual push forward measure, i.e.

ϕiµ(A) = µ(ϕ−1
i (A)), forA ⊆ X.

We say µ is an invariant measure if Sµ = µ.
If the contractions are similarities, then µ is called selfsimilar fractal

measure. Let Mq denote the set of unit mass Radon measures µ on X with
finite q-th moment. That is,

Mq = {µ ∈ M |µ(X) = 1,

∫
X

dq(x, a)dµ(x) < ∞}

for some (and hence any) a ∈ X. Note that, if p ≥ q then Mp ⊂ Mq.
The lq minimal metric lq on Mq is defined by

lq(µ, ν) = inf{(
∫

X
dq(x, y)dγ(x, y))

1
q
∧1|π1γ = µ, π2γ = ν}

where ∧ denotes the minimum of the relevant numbers and πiγ denotes the
i-th marginal of γ, i.e. projection of the measure γ on X ×X onto the i-th
component.

The following theorem was proved in [4] in case q = 1 and in general in
[6].
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Theorem 4.1. If S = (p1, ϕ1, · · · , pm, ϕm) is a probabilisitc IFS and

λq :=
m∑

i=1

pir
q
i < 1

for some q > 0, then there is a unique invariant measure µ∗ ∈ Mq of S.
Moreover, for any µ0 ∈ Mq,

lq(Skµ0, µ
∗) ≤ λ

k( 1
q
∧1)

q

1− λ
1
q
∧1

q

lq(µ0,Sµ0) → 0 as k →∞.

Proof. We have S : Mq → Mq. Moreover,

lq∨1
q (Sµ,Sν) = lq∨1

q (
m∑

i=1

piϕiµ,
m∑

i=1

piϕiν) ≤

≤
m∑

i=1

pil
q∨1
q (ϕiµ, ϕiν) ≤

m∑
i=1

pir
q
i l

q∨1
q (µ, ν)

from the properties of lq. Hence S is a contraction map with contraction

constant λ
1
q
∧1

q . This implies the theorem �

Let
M0 := ∪q>0Mq.

Since
(
∫

X
log dq(x, a)dµ(x))

1
q → exp

∫
X

log d(x, a)dµ(x)

as q → 0, it follows that

M0 = {µ ∈ M |µ(X) = 1,

∫
X

log d(x, a)dµ(x) < ∞}.

Since λ
1
q
q →

∏m
i=1 rpi

i as q → 0, it follows that if
∏m

i=1 rpi
i < 1 (i.e.

∑m
i=1 pi log ri <

0), then there is a unique measure µ∗ ∈ M0 which satisfies S. Moreover, for
any µ0 ∈ M0, Skµ0 → µ∗ in the weak sense of measures as k →∞.

It also follows that the µ∗ in the theorem is unique in the M0.

Since λ
1
q
q → max1≤i≤N ri as q → ∞, then the support of µ denoted

by sptµ∗ is compact and is the unique invariant compact set of the IFS
(ϕ1, ..., ϕm). Moreover, if sptµ0 is compact then sptSkµ0 → sptµ∗ in the
Hausdorff metric sense.

There is a random algorithm for constructing the invariant measure µ.
Let (i1, i2, ...) be a random sequence such that ij = i with probability pi,
independently for each j. Fixing x ∈ sptµ, we define for each Borel set A

µx(A) = lim
k→∞

1
k
card{k′ ≤ k such that ϕik′ ◦ · · · ◦ ϕi1(x) ∈ A}.
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Then for µ-almost all x we have µx(A) = µ(A). Thus iterating x under
a random sequence of mappings with Si chosen with probability pi, the
proportion of iterates lying in a set A approximates µ(A).

For example taking p1 = p2 = 1
2 and

ϕ1(x) =
1
3
x ϕ2(x) =

1
3
x +

2
3

gives the so called Cantor measure. The Figure 6 is an example based on
the Menger sponge.

Figure 6. The probabilistic Menger sponge
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