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Method of steps for mixed second order
functional-differential equations

RAZVAN V. GABOR

ABSTRACT. The main purpose of this paper is to apply the method of steps for mixed second order

functional differential equations. The linear case is discussed as an example.

1. THE MAIN RESULT

In what follows we shall consider the problem:

)= ftx@t),z(t—h),z({t+h), telal]
z(t)=¢(t), t€l[to—hto+h]

where tg € [a,b], a <tg—h,to+h <band ¢ € C?[ty — h,to + h].

to—a b—t
Let n, := OT ,Np 1= - ol and n == max{ng, np}-

By a solution of (1.1) + (1.2) we understand a function
x € Cla— h,b+ h] N C?a,b]
which satisfies (1.1) + (1.2) for all ¢ € [a, b].
We consider the following conditions:
Let f € C"2([a,b] x R3).
(C1) For all uq € [a, b], u2, us, us € R, there exist a unique us € R,
Uz = f1(1L1,U2,U4,U5), f1 S C’””([a, b] X R3)
such that us = f(ul, U2, U3, U4).
(C2) For all uq € [a, b],u2, u3, us € R, there exist a unique uy € R,
Uy = fg(ul,UQ,U3,U5), fg S C’"H([a, b] X RB)

such that Uy = f(ul, U2, U3, ’U,4).
We have the result:

Theorem 1.1. Let f € C""2([a, b] x R?) which satisfies (C'1) and (C2).
If p € C"F2[tg — h,to + h), then the problem (1.1) + (1.2) has a unique solution

x € C"a— h,b+h] N C""[a,b].
If o satisfies the condition:

G5 (o) = [£(t. (1), 0t — h),p(t+ D)L, | ke {0,1,2,...,n},

then z € C"*2[a — h,b+ h).
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Proof. By the method of steps we construct the solution of (1.1) + (1.2) as follows:
Lett € [to,to + h]. Then ¢"(t) = f(t,¢(t), o(t — h),z(t + h)). From condition
(C2) we have:

2() = 21(8) = folt — by p(t — ), p(t — 2h), " (t = ), L € [to + h, o + 2A).
By the same method we find the final step:
Ty (1) = fot = By, —1(t = h), 2,1 (t = 2h), 25, 1 (t = h)),t € [to + np - h, b],

b—to
. We must have

where ny, = {

o(to + h) = z1(to + h)

zp(to+ (p+1)h) = zppa(to+ (p+1)h), p<ny—1
In the same way we have the solution on [a,tg] with the condition:
<P(t0 - h) = x—l(tO - h)r l‘—p(to - (p + 1)h) = Z‘,(p+1)(t0 - (p + l)h)? p < ng — 1/

t —
where n, = [ 0 h a]. So, the solution is:
T_p, (1), ift € [a,tg — nghl,
x_(t), ift € [to — (k+ 1)h, to — kh],
z(t) =< 1<k<ng—1p(t), iftelto— h,to+hl,
:Ek(t), ift € [t0+kh t0+(k+1)h]

1<k<ny— 11’nb(t), ift e [t0+nbh b]

Let n := max{n,, n, }. Now we prove the necessity of the condition (1.3).
Let z € Cla — h,b+ h] N C?[a, b] be a solution of the problem (1.1) + (1.2).
Ifz € C"a — h,b+ h] N C"*2[a, b], then:

e B () = [f(t, x(t), z(t — h), z(t + h))]® forall ¢ € [a,b], k € {0,1,2,...,n}.
For t = ty we have:
P (k) = [£(t o (8), o(t = ), ot + R, b € {0,1,2,.,n}.
Since p € C""2[tg — h,ty + h], we infer that x € C"™2[a — h, b+ h]. O

2. EXAMPLE

We consider the following example:
2"(t)=a-x(t)+ 8-zt —h)+v-x(t+h)te ab] (2.4)
x(t) = Qo(t)v te [tO - h, to + h]a (25)
where a, 3,7 € R, 5 #0,v # 0,ty € [a,b] and a < tg — h; tg + h < b.
To find conditions for the existence of a solution of the problem (2.4) + (2.5) we
apply the method of steps on intervals [¢, b] and [a, to].
Let t € [to,to + h),
¢'(t) = p(t) +B-p(t—h)+v- @t +h)
Then

2(t) = a1 () = % [ @(t—h)+ B plt — 2h) — & (t — h)],
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fort € [to + h,to + 2h].
Lett € [to + h,to + 2h),
i) =a-x1(t)+ B0t —h)+~v-x(t+h).
Then
o(t)i= aa(t) = - [ 22(t =)+ B plt = 20) —af (¢ = B

fort € [to + 2h,tg + 3h]
In the same way the final step on [t, b] we obtain:

1
xnb(t) = ; ’ [a ’ xnb—l(t —h)+0- xm,—2(t —2h) — ac;:b_l(t - h)]:

b—tg
fort € [tg + np - h, b], where n, = .

Oninterval [a,to] we find that:

1
T, (1) = - la - @p,—1(t+h) + B on,—2(t +2h) — 27 4 (t+R)],
to —a
fort € [a,tg — n, - h], where n, = W

Let n := max{n,,np}, p € C"2[tg—h,to+h|and x € C"[a—h,b+h]NC"2[a, b]
be a solution of the problem (2.4) + (2.5).
We have:

e D)y =a- P+ 8- 2t —h) + - 2Bt +h
( t)+5 ( gl )
fork € {0,1,2,....,n}.
For t = t, we obtain:
e (1) = a- oW (ko) + 8- oW (tg — h) + 7 - ™ (to + ),
fork € {0,1,2,....,n}.
Then the problem (2.4) + (2.5) has a solution if and only if
¥t (1) = o oF) (o) + B o*) (to — h) + 7 - ¥ (t0 + h),
fork € {0,1,2,...,n}.
For example, if
a=0=1 v=-1, h=m, ¢(t) =sin(7m — 1)
to=0, a=—-2m, b=2x, t € [—m, 7]
we have the following solution:

x(t) =sin(r —t), t € [-2x,27].
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