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Geometric prequantization of the dual of Lie algebra
so(6)

MIHAI IVAN

ABSTRACT. We consider the Lie algebra so(6) of the special orthogonal Lie group SO(6) and we
give the construction of the Lie-Poisson structure on the dual of so(6). The goal of our paper is to
construct a geometric prequantization of the Poisson manifold so(6)∗, using the Weinstein theory of
symplectic groupoids.

1. INTRODUCTION

In the last time was a great deal of interest in the study of Poisson manifolds
and of Lie groupoids in connection with their deep applications in differential ge-
ometry, symplectic geometry and quantum mechanics; see, for instance Mackenzie
[9], Mikami and Weinstein [11] and Puta [12]. Among the most important subjects
of the theory of Poisson manifolds is of course the problem of their quantization
from the geometric quantization point of view. Moreover, the theory of geometric
quantization was extended to the Poisson manifolds via the theory of symplectic
groupoids in the sense of Karasev and Weinstein.

The problem of geometric prequantization of a Poisson manifold was one of the
principal motivations behind the introduction of symplectic groupoids in Karasev
( [7], 1987 ) and Weinstein ( [14] , 1987 ). There are some many results in this
direction in a series of papers; see for details [8], [12] - [15].

In the papers of Gh. Ivan ( [3] ), Gh. Ivan and Popuţa ( [4], [5] ) are given the
constructions of the geometric prequantization of the Poisson manifold so(n)∗,
for n = 3, 4 and 5. In the sequel, we want to discuss this problem for the Poisson
manifold so(6)∗.

2. THE LIE ALGEBRA so(6)

The Lie algebra so(6) is the algebra of all skew-symmetric matrices of type 6×6
with real coefficients and the Lie bracket [·, ·] given by the commutator of matrix,
i.e. [A,B] = AB −BA, for all A,B ∈ so(6). More precisely, we have:

so(6) =
{(

A11 A12

−AT
12 A22

)
|A11, A12, A22 ∈ M3 (R)

}
,
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where

A11 =

 0 a1 a2

−a1 0 a6

−a2 −a6 0

 , A12 =

 a3 a4 a5

a7 a8 a9

a10 a11 a12

 ,

A22 =

 0 a13 a14

−a13 0 a15

−a14 −a15 0


and ai ∈ R for i = 1, 15. We denote by εi,j the matrix of type 6 × 6 having all
elements equal with zero except the element of the position (i, j) which is equal to
one. Then the set of skew-symmetric matrices {εi,j−εj,i|i < j, i, j = 1, n} is a basis
of the Lie algebra so(6). Hence, so(6) is a Lie algebra of dimension 15. Thus, if we
take Ê = {Ei|i = 1, 15}, where:

Ei = ε1,i+1 − εi+1,1 for i = 1, 5
E5+j = ε2,j+2 − εj+2,2 for j = 1, 4
E9+k = ε3,k+3 − εk+3,3 for k = 1, 3
E12+s = ε4,s+4 − εs+4,4 for s = 1, 2
E15 = ε5,6 − ε6,5

(1)

we obtain the canonical basis of the Lie algebra so(6).
It follows that, for all A ∈ so(6) there exists αi ∈ R, i = 1, 15 such that

A = αiEi, i = 1, 15.. Also, for all A,B ∈ so(6) we have [A,B] = [αiEi, β
jEj ] =

αiβj [Ei, Ej ], i, j = 1, 15, where

[Ei, Ej ] = ck
i,jEk, i, j, k = 1, 15. (2)

The real numbers ck
i,j , i, j, k = 1, 15 from (2) are called the structure constants of

the Lie algebra so(6).
Proposition 1. The nonnulls structure constants of the Lie algebra so(6) in the base Ê

are given in the following relations:

ci+4
1,i = −1, i = 2, 5; c2

1,6 = −1; cj−4
1,j = 1, j = 7, 9; ci+7

2,i = −1, i = 3, 5
c1
2,6 = −1; cj−7

2,j = 1, j = 10, 12; ci+9
3,i = −1, i = 4, 5; c1

3,7 = −1
c2
3,10 = −1; cj−9

3,j = 1, j = 13, 14; c15
4,5 = −1; c1

4,8 = −1
c2
4,11 = −1; c3

4,13 = −1; c5
4,15 = 1; c1

5,9 = −1
c2
5,12 = −1; c3

5,14 = −1; c4
5,15 = −1

(3.1)


c10
6,7 = −1; c11

6,8 = −1; c12
6,9 = −1; c7

6,10 = 1; c8
6,11 = 1; c9

6,12 = 1
c13
7,8 = −1; c14

7,9 = −1; c6
7,10 = −1; c8

7,13 = 1; c9
7,14 = 1; c15

8,9 = −1
c6
8,11 = −1; c7

8,13 = −1; c9
8,15 = 1; c6

9,12 = −1; c7
9,14 = −1; c8

9,15 = −1
c13
10,11 = −1; c14

10,12 = −1; c11
10,13 = 1; c12

10,14 = 1; c15
11,12 = −1; c10

11,13 = −1
c10
12,14 = −1; c11

12,15 = −1; c15
13,14 = −1; c14

13,15 = 1; c13
14,15 = −1

(3.2)

ck
ij = −ck

ji for values of, i and j in (3.1) and (3.2). (3.3)
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Proof. Applying the properties of Lie brackets, we observe that [Ei, Ei] = 0,
for all i = 1, 15 and [Ei, Ej ] = −[Ej , Ei], for all i, j = 1, 15, i 6= j. It suffices to
calculate the Lie brackets [Ei, Ej ] for all i, j = 1, 15 such that i < j.

Using the relation εi,j ·εs,t =
{

0 j 6= s
εi,t j = s

we obtain the brackets [Ei, Ej ], i <

j, i, j = 1, 15 expressed in the basis {Ei | i = 1, 15 } as in the following tables:

[·, ·] E1 E2 E3 E4 E5 E6 E7 E8 E9

E1 0 −E6 −E7 −E8 −E9 −E2 E3 E4 E5

E2 E6 0 −E10 −E11 −E12 −E1 0 0 0
E3 E7 E10 0 −E13 −E14 0 −E1 0 0
E4 E8 E11 E13 0 −E15 0 0 −E1 0
E5 E9 E12 E14 E15 0 0 0 0 −E1

E6 E2 E1 0 0 0 0 −E10 −E11 −E12

E7 −E3 0 E1 0 0 E10 0 −E13 −E14

E8 −E4 0 0 E1 0 E11 E13 0 −E15

E9 −E5 0 0 0 E1 E12 E14 E15 0

[·, ·] E10 E11 E12 E13 E14 E15

E1 0 0 0 0 0 0
E2 E3 E4 E5 0 0 0
E3 −E2 0 0 E4 E5 0
E4 0 −E2 0 −E3 0 E5

E5 0 0 −E2 0 −E3 −E4

E6 E7 E8 E9 0 0 0
E7 −E6 0 0 E8 E9 0
E8 0 −E6 0 −E7 0 E9

E9 0 0 −E6 0 −E7 −E8

[·, ·] E1 E2 E3 E4 E5 E6 E7 E8 E9

E10 0 −E3 E2 0 0 −E7 E6 0 0
E11 0 −E4 0 E2 0 −E8 0 E6 0
E12 0 −E5 0 0 E2 −E9 0 0 E6

E13 0 0 −E4 E3 0 0 −E8 E7 0
E14 0 0 −E5 0 E3 0 −E9 0 E7

E15 0 0 0 −E5 E4 0 0 −E9 E8

[·, ·] E10 E11 E12 E13 E14 E15

E10 0 −E13 −E14 E11 E12 0
E11 E13 0 −E15 −E10 0 E12

E12 E14 E15 0 0 −E10 −E11

E13 −E11 E10 0 0 −E15 E14

E14 −E12 0 E10 E15 0 −E13

E15 0 −E12 E11 −E14 E13 0

.
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From equality [E1, E2] = −E6 =
15∑

i=1

ci
1,2Ei, we obtain the structure constants

c6
1,2 = −1 and cj

1,2 = 0, for j = 1, 15, j 6= 6.
In the same manner, we obtain successively the structure constants of the Lie

algebra so(6), given by the relations (3.1)− (3.3). �
Let ê = {ei | i = 1, 15 } be the canonical basis of the vector space R15. Consider

the bijection f : ê = { ei | i = 1, 15 } −→ Ê = { Ei | i = 1, 15 } defined
by f(ei) = Ei, (∀) i = 1, 15, whith Ei ∈ so(5) given by (1) and satisfying the
condition f(−ei) = −Ei, (∀) i = 1, 15.

We define on ê the brackets [ei, ej ], i, j = 1, 15 by:

[ei, ej ] = −[ej , ei] = f−1([f(ei), f(ej)]), for i < j and [ei, ei] = 0. (4)

For example, [e1, e2] = f−1([f(e1), f(e2)]) = f−1([E1, E2]) = f−1(−E6) = −e6.
It is clearly that :

[ei, ej ] = ck
i,jek, i, j, k = 1, 15 (5)

where ck
i,j are given in Proposition 1 by the relations (3.1)- (3.3).

If we define now the bracket on R15 by:

[x, y] = ck
i,jx

iyjek, i, j, k = 1, 15 (6)

where x = xiei, y = yjej and ck
i,j are given in (3.1)− (3.3), then (R15,+, ·, [·, ·]) is

a Lie algebra over R of dimension 15.
We denote by f̂ : R15 −→ so(6) the extension by linearity of the bijection f , i.e.

f̂ : x = (x1, x2, . . . , x15) ∈ R15 −→ f̂(x) = x̂ ∈ so(6) (7)

where x̂ =
(

X11 X12

−XT
12 X22

)
with X11, X12, X22 ∈M3(R) given by

X11 =

 0 x1 x2

−x1 0 x6

−x2 −x6 0

 X12 =

 x3 x4 x5

x7 x8 x9

x10 x11 x12

 and

X22 =

 0 x13 x14

−x13 0 x15

−x14 −x15 0


We can prove the following proposition.
Proposition 2. The map f̂ is an isomorphism of the Lie algebra R15 onto the Lie algebra

so(6).

3. THE LIE-POISSON STRUCTURE ON THE DUAL OF LIE ALGEBRA so(6)

Let P be a smooth m-dimensional manifold and C∞(P,R) the algebra of
functions of C∞- class from P to R. A Poisson manifold is a pair (P, {·, ·}), where
{·, ·} is a bilinear operation on C∞(P,R) such that (C∞(P,R) is a Lie algebra and
{·, ·} satisfies the Leibniz identity in each argument; that is, for all a, b ∈ R and
f, g, h ∈ C∞(P,R), the map ξh : f ∈ C∞(P,R) −→ ξh(f) = {h, f} ∈ C∞(P,R)
verifies the following identities:
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
ξh(af + bg) = aξh(f) + bξh(g)
ξh(f) = −ξf (h)
ξh({f, g}) = {ξh(f), g}+ {f, ξh(g)} ( Jacobi)
ξh(f · g) = ξh(f) · g + f · ξh(g) ( Leibniz).

(8)

Let SO(6) be the special orthogonal group, i.e. the group of all matrices X of
type 6×6 with real coefficients such that XT ·X = I6 and det(X) = 1. It is obvious
that SO(6) is a closed subgroup of the Lie group M6(R), so it is a Lie group. Its
Lie algebra is so(6).

Let so(6)∗ be the dual space of so(6). We have that so(6)∗ ∼= so(6) and on other
hand so(6) is isomorphic with the Lie algebra R15 by f̂ : R15 −→ so(6), see
Proposition 1.

Then so(6)∗ has a canonical Lie-Poisson structure ( see [6] ), called the minus
Lie-Poisson structure and it is determined by the matrix given by:

({ui, uj}) = −(ck
i,juk) =

(
U11 U12

−UT
12 U22

)
, (9)

with U11 ∈M9(R), U12 ∈M9×6(R), U22 ∈M6(R), where

U11 =



0 u6 u7 u8 u9 u2 −u3 −u4 −u5

−u6 0 u10 u11 u12 u1 0 0 0
−u7 −u10 0 u13 u14 0 u1 0 0
−u8 −u11 −u13 0 u15 0 0 u1 0
−u9 −u12 −u14 −u15 0 0 0 0 u1

−u2 −u1 0 0 0 0 u10 u11 u12

u3 0 −u1 0 0 −u10 0 u13 u14

u4 0 0 −u1 0 −u11 −u13 0 u15

u5 0 0 0 −u1 −u12 −u14 −u15 0


,

U12 =



0 0 0 0 0 0
−u3 −u4 −u5 0 0 0
u2 0 0 −u4 −u5 0
0 u2 0 u3 0 −u5

0 0 u2 0 u3 u4

−u7 −u8 −u9 0 0 0
u6 0 0 −u8 −u9 0
0 u6 0 u7 0 −u9

0 0 u6 0 u7 u8


,

U22 =


0 u13 u14 −u11 −u12 0

−u13 0 u15 u10 0 −u12

−u14 −u15 0 0 u10 u11

u11 −u10 0 0 u15 −u14

u12 0 −u10 −u15 0 u13

0 u12 −u11 u14 −u13 0


and ck

i,j , i, j, k = 1, 15 are the structure constants of so(6), given by Proposition 1.
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It follows that the pair (so(6)∗, {·, ·}) is a Poisson manifold.

4. THE SYMPLECTIC INTEGRATION OF so(6)∗

For basic notions, results and references about Lie groupoids and symplectic
groupoids we refer the reader to [2], [9], [11].

Let (G, α, β, µ, ε, ι;G0) be a Lie groupoid over G0 or a Lie groupoid with the base G0

( see [9]). We recall that (G;G0) is a pair of manifolds equipped with two surjective
submersions α, β : G → G0 (the source and the target), a differentiable map µ :
G(2) = {(x, y) ∈ G × G | β(x) = α(y)} −→ G, (x, y) −→ µ(x, y) = xy (partial
multiplication law), an injective differentiable map ε : G0 → G, u → ε(u)
(inclusion map) and a differentiable map ι : G −→ G, x −→ ι(x) = x−1 (inversion
map).

These maps satisfy the following algebraic axioms generalizing those of group :

• α(xy) = α(x) and β(xy) = β(y), for all (x, y) ∈ G(2);

• (associativity) (xy)z = x(yz), in the sense that , if one side of the equation is
defined so is the other and then they are equal ;

• (identities) for each x ∈ G we have (ε(α(x)), x) ∈ G(2), (x, ε(β(x))) ∈ G(2) and
ε(α(x)) · x = x · ε(β(x)) = x;

• (inverses) for each x ∈ G we have (x−1, x) ∈ G(2), (x, x−1) ∈ G(2), x · x−1 =
ε(β(x)) and x−1 · x = ε(α(x)).

The subset ε(G0) of G is the set of units of the groupoid G over G0.
Example 1. Let be the cotangent bundle T ∗SO(6) of the manifold SO(6) and

π : T ∗SO(6) → SO(6) its projection. Then the addition in the fibers defines
a Lie groupoid structure on T ∗SO(6) for which G0 = SO(6), α = β = π, ι :
T ∗SO(6) → T ∗SO(6) is the multiplication by −1 and ε : SO(6) → T ∗SO(6) is
the zero section. �

A symplectic groupoid is a Lie groupoid (G, α, β, µ, ε, ι;G0) endowed with a
symplectic structure ω on G for which the graph { (x, y, µ(x, y)) ∈ G × G ×
G | (∀) (x, y) ∈ G(2) } of the groupoid multiplication µ is a Lagrangian submanifold
of (G×G×G, ω ⊕ ω ⊕ (−ω)).

A symplectic groupoid is denoted by (G, ω).
This interesting class of groupoids, which was introduced in [2], arises in the

integration of arbitrary Poisson manifolds.
Example 2. On the Lie groupoid T ∗SO(6) there exists a canonical symplectic

structure. For this, we can define the 1- form θ on T ∗SO(6) by θ(v)(g) = v(Tπ(g)),
where v ∈ T ∗SO(6), g ∈ Tv(T ∗SO(6)), and Tπ : T (T ∗SO(6)) → TSO(6) is
the tangent map to π : T ∗SO(6) → SO(6). Then we define ω = dθ so the pair
(T ∗SO(6), ω = dθ) is a symplectic manifold.

It is easy to prove that this symplectic structure given on T ∗SO(6) is compatible
with the groupoid structure of T ∗SO(6) over SO(6), see Example 1.

It follows that (T ∗SO(6), ω = dθ) is a symplectic groupoid over SO(6). �
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A symplectic integration of a Poisson manifold (M,Λ) ( see [12]), is a symplectic
groupoid (G, ω) which realizes the Poisson manifold (M,Λ); i.e. such that the base
G0 with the induced Poisson structure Λ0 is isomorphic to (M,Λ).

Theorem 1. The pair (T ∗SO(6), ω = dθ) is a symplectic groupoid over so(6)∗.
Proof. Let Lg and Rg be the left and right translations by g in SO(6). These

actions can be lifted to left and right actions on T ∗SO(6) as follows. Define
L : (g, uh) ∈ SO(6)× T ∗SO(6) → L(g, uh) = (TghLg−1)∗uh ∈ T ∗SO(6)
R : (g, uh) ∈ SO(6)× T ∗SO(6) → R(g, uh) = (ThgRg−1)∗uh ∈ T ∗SO(6).

These two commuting actions have the following Ad∗−equivariant momentum
maps:
JL : uh ∈ T ∗SO(6) → JL(uh) = (TeRh)∗uh ∈ so(6)∗ and
JR : uh ∈ T ∗SO(6) → JR(uh) = (TeLh)∗uh ∈ so(6)∗.

Then T ∗SO(6) is a groupoid over so(6)∗ with JR, JL as the source and target
maps.

Using the canonical identification T ∗SO(6) ∼= SO(6) × so(6)∗ by right transla-
tions and the notations δν ∈ TνSO(6), δgh = T (Rh)δg and ν ◦ g = ν ◦ Ad(g) =
Ad(g)∗ν, we may describe the symplectic groupoid structure as follows:
α(ν, g) = ν; β(ν, g) = ν · g; ε(ν) = (ν, e); µ((ν, g), (ν · g, h)) = (ν, gh) and
ι(ν, g) = (ν, g)−1 = (ν · g, g−1).

The symplectic structure ω = dθ in this representation is given by :
ω((δν, δg), (δν′, δg′)) =< δν′, δg · g−1 > − < δν, δg′ · (g′)−1 >=< ν, [δg · g−1, δg′ ·
(g′)−1] >,
where < ·, · > is the pairing between so(6)∗ and so(6). �

Theorem 2. Let (T ∗SO(6), ω = dθ) the symplectic groupoid over so(6)∗. Then the
induced Poisson structure on so(6)∗ is exactly the canonical Lie-Poisson structure on it.

Proof. We have that the pair (so(6)∗, {·, ·}) is a Poisson manifold (see Section 2).
The dual space so(6)∗ carries a canonical Lie-Poisson structure defined as fol-

lows. For f, g ∈ C∞(so(6)∗,R) define

{f, g}LP (v) = − < v, [
δf

δu
,
δg

δu
] > (10)

where [·, ·] is the standard Lie bracket on so(6) and the element
δf

δu
is given by:

Df(u) · w =< w,
δf

δu
>, for all u, w ∈ so(6)∗,

(here Df is the derivative of f ).
In fact, the bracket {·, ·}LP is the one induced on so(6)∗ by identifying

C∞(so(6)∗,R) with left invariant functions on T ∗SO(6). In terms of a basis {ei}
and its dual basis {ei} with u = uie

i the formulas (10) becomes

{f, g}LP (u) = −
∑
i,j,k

ck
i,j

∂f

∂ui

∂g

∂uj
(11)

where ck
i,j are the structure constants of the Lie algebra so(6).



32 Mihai Ivan

Using the isomorphisms T ∗SO(6) ∼= SO(6)× so(6)∗ ∼= SO(6)×R15 (see Propo-
sition 2), it is easy to deduce that the induced Poisson structure {·, ·}0 on so(6)∗ is
in fact the canonical Lie-Poisson structure {·, ·}LP on so(6)∗. �

Theorem 3. The symplectic integration of the Poisson manifold (so(6)∗, {·, ·}) is the
symplectic groupoid (T ∗SO(6), ω = dθ) over so(6)∗.

Proof. By Theorem 1, the pair (T ∗SO(6), ω = dθ) is a symplectic groupoid over
so(6)∗. By Theorem 2, the induced Poisson structure on so(6)∗ is isomorphic to
(so(6)∗, {·, ·}).

It follows that (T ∗SO(6), ω = dθ) is a symplectic integration of the Poisson
manifold (so(6)∗, {·, ·}). �

5. GEOMETRIC PREQUANTIZATION OF so(6)∗

Let us consider the following diagram:(
so(6)∗

{·, ·}LP

)
−→

(
H0

δ0

)
where in the right hand H0 is a Hilbert space and δ0 is a map which assigns to
each f ∈ C∞(so(6)∗,R) a self-adjoint operator δ0

f : H0 → H0 and in the left
hand so(6)∗ is the dual of Lie algebra so(6) togheter with its canonical Lie-Poisson
structure.

The arrow left to right is called prequantization; i.e., it is a procedure to derive
from the classical dates (so(6)∗, {·, ·}LP ) and the quantum dates (H0, δ

0) such
that the following conditions, called Dirac conditions, to be satisfied:

(D1) δ0
f+g = δ0

f + δ0
g ;

(D2 δ0
af = a · δ0

f ;

(D3) δ0
Idso(6)∗

= IdH0 ;

(D4) [δ0
f , δ0

g ] = i~δ0
{f,g}LP

for each f, g ∈ C∞(so(6)∗,R) and for each a ∈ R, where ~ is the Planck‘s
constant divided by 2π.

Let L : SO(6) × SO(6) → SO(6) be the action of SO(6) on itself by right
translations and LT∗ its lift to T ∗SO(6). This action has the momentum mapJ :
T ∗SO(6) → so(6)∗ given by:

(J(ug))(ξ) = ug(TRg(ξ))

which is a Poisson map; see, Marsden and Raţiu ([10]).
It is well known that (T ∗SO(6), ω = dθ) is a quantizable manifold from the

geometric point of view (since ω is a exact form); see Puta ([12]). Then its Hilbert
representation is

Hω = L2(T ∗SO(6),C)

where L2(T ∗SO(6),C) denotes the Hilbert space of complex-valued functions
defined on T ∗SO(6) which are square integrable and the prequantum operator
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δω : Hω → Hω is given by:

δω
f = −i~Xf − θ(Xf ) + f,

where Xf is the vector field which is canonically associated to f.
For H and δ0

f we take

H0 = Hω = L2(T ∗SO(6),C) and δ0
f = δω

f◦α for each f ∈ C∞(R15,R). (12)

Theorem 4. The pair (H0, δ
0) where H0 and δ0 are given by (12), gives rise to a

prequantization of the Poisson manifold so(6)∗ ∼= R15.
Proof. For the proof we shall verify Dirac’s conditions (D1) − (D4). The condi-

tions (D1)− (D3) are easily verified. For the condition (D4) we have succesively:

[δ0
f , δ0

g ] = [δω
f◦α, δω

g◦α] = i~δω
{f◦α,g◦α}ω

=

= i~δω
{f,g}LP ◦α = i~δ0

{f,g}LP
, (∀) f, g ∈ C∞(R15,R),

where we have used the property of α to be a Poisson map, that is
{f ◦ α, g ◦ α}ω = {f, g}LP ◦ α. �

Using the same arguments as in the paper of Chernoff ([1]) with obvious modi-
fications it is easy to prove the following theorem.

Theorem 5. Let O(L2(T ∗SO(6),C)) be the space of self-adjoint operators defined on
L2(T ∗SO(6),C) . Then the map:

f ∈ C∞(so(6)∗,R) → δ0
f ∈ O(L2(T ∗SO(6),C))

gives rise to an irreductible representation of C∞(so(6)∗,R) onto O(L2(T ∗SO(6),C)) .
�

For more details concerning the geometric quantization and its applications in
geometry and quantum mechanics, see [8], [12], [13], [15].
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[4] Ivan Gh., Popuţa V., The Poisson manifold so(3)∗ and its quantization, P.U.M.A., Vol.4, 1993, 439-445
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