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About Tm,s(x) polynomials

OVIDIU T. POP

ABSTRACT. In this paper we give a new proof of some relations verified by Tm,s(x) polynomials.

1. INTRODUCTION

Remind some known notions and results (see [1], [3] or [6]).

Definition 1.1. For m ∈ N, define

pm,k(x) = (m
k )xk(1− x)m−k, ∀ k ∈ {0, 1, . . . ,m} , ∀ x ∈ [0, 1]. (1.1)

Definition 1.2. For m ∈ N, define

Tm,s(x) =
m∑

k=0

(k −mx)spm,k(x) , ∀ s ∈ N , ∀ x ∈ [0, 1]. (1.2)

Example 1.1. From Definition 1.2 we immediately have

Tm,0 (x) =
m∑

k=0

pm,k(x) = 1, Tm,1 (x) =
m∑

k=0

(k −mx)pm,k(x) = 0 and

Tm,2 (x) =
m∑

k=0

(k −mx)2pm,k(x) = mx(1− x) , ∀ x ∈ [0, 1].

Lemma 1.1. Let m ∈N and s ∈ N∗. Then

Tm,s+1(x) = x(1− x)
[
T ′m,s(x) + msTm,s−1(x)

]
,∀ x ∈ [0, 1] . (1.3)

Example 1.2. Taking Lemma 1.1 and Example 1.1 into account, we obtain

Tm,3(x) = mx(1− x)(1− 2x) and

Tm,4(x) = 3m2x2(1− x)2 + m
[
x(1− x)− 6x2(1− x)2

]
, ∀ x ∈ [0, 1].

The study of Tm,s(x) polynomials is important because these polynomials ap-
pear in Voronovskaja’s generalized theorem.The text of this theorem is:

Theorem 1.1. Let f : [0, 1] → R be s times derivable function in the point x ∈ [0, 1],
s ∈ N, s even. Then

lim
m→∞

m
s
2

[(
Bmf

)
(x)−

s∑
i=0

1
mii!

Tm,i(x)f (i)(x)

]
= 0 . (1.4)

For Theorem 1.1 and her consequences see [2], [3] or [5].
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2. MAIN RESULTS

Considering Example 1.1, Example 1.2 and Lemma 1.1, for m, s ∈ N, s 6= 1 and
x ∈ [0, 1], we have

Tm,s(x) = a(0)
m,s(x)mn + a(1)

m,s(x)mn−1 + · · ·+ a(n)
m,s(x) (2.1)

where a
(i)
m,s(x) with i ∈ {0, 1, . . . , n} are polynomials of variable x and

Tm,s(x) = b(0)
m,s(m)xp + b(1)

m,s(m)xp−1 + · · ·+ b(p)
m,s(m) , (2.2)

where again b
(j)
m,s(m), with j ∈ {0, 1, . . . , p} are polynomials of variable m.

Definition 2.1. a) If α ∈ [0, 1] exists so that a
(0)
m,s(α) 6= 0, then we say that the

degree of m in Tm,s(x) is n and we write grmTm,s(x) = n;
b) If β ∈ N exists so that b

(0)
m,s(β) 6= 0, we say that the degree of x in Tm,s(x) is p

and write grxTm,s(x) = p.

Example 2.1. Heeding the Examples 1.1 and 1.2 we have
grmTm,2(x) = 1, grmTm,3(x) = 1, grmTm,4(x) = 2,

grxTm,2(x) = 2, grxTm,3(x) = 3 and grxTm,4(x) = 4 .

Theorem 2.1. Let m ∈ N∗ and s ∈ N ,s 6= 1. Then

grmTm,s(x) =
[s

2

]
(2.3)

and
grxTm,s(x) = s . (2.4)

Proof. For s = 0, relations (2.3) and (2.4) are true. Let s ∈ N, s ≥ 2.
We will prove by induction after s that

Tm,s(x) = am,s(x)m[ s
2 ] + pm,s(m,x) , (2.5)

grmTm,s(x) =
[s

2

]
, grmpm,s(m,x) <

[s

2

]
, ∀ s ∈ N , s ≥ 2 ,

where grmpm,s(m,x) is considered according to Definition 2.1.
For s = 2 we have Tm,s(x) = am,2(x)m + pm,2(m,x), where
am,2(x) = x(1− x) and pm,2(m,x) = 0. Assume that

Tm,n(x) = am,n(x)m[n
2 ] + pm,n(m,x), grmTm,n(x) =

[
n

2

]
,

grmpm,n(m,x) <

[
n

2

]
, ∀ n ∈ {2, 3, . . . , s}. From (2.5) and Lemma 1.1 it follows

that

Tm,s+1(x) = x(1− x)
[
T ′m,s(x) + msTm,s−1(x)

]
=

= x(1− x)
{

a′m,s(x)m[ s
2 ] + p′m,s(m,x) + ms

[
am,s−1(x)[

s−1
2 ]

m +

+ pm,s−1(m,x)
]}

= x(1− x)
[
a′m,s(x)m[ s

2 ] + sam,s−1(x)m[ s+1
2 ]+

+p′m,s(m,x) + mspm,s−1(m,x)
]

and hence
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Tm,s+1(x) = am,s+1(x)m[ s+1
2 ] + pm,s+1(m,x), (2.6)

where

am,s+1(x) =

{
x(1− x)

[
a′m,s(x) + sam,s−1(x)

]
, if s is even

x(1− x)sam,s−1(x) , if s is odd
(2.7)

and

pm,s+1(m,x) =


x(1− x)

[
p′m,s(m,x) + mspm,s−1(x)

]
, if s is even

x(1− x)
[
a′m,s(x)m[ s

2 ] + p′m,s(m,x) + mspm,s−1(x)
]
,

if s is odd .

(2.8)

From (2.7) we have that am,s+1(x) is not the identical null polynomial, thus there
exists α ∈ [0, 1] so that am,s+1(α) 6= 0.

From (2.8) results that grmpm,s+1(m,x) <

[
s + 1

2

]
so (2.3) holds.

We prove through induction after s that

Tm,s(x) = bm,s(m)xs + rm,s(m,x), (2.9)

grxTm,s(x) = s, grxrm,s(m,x) < s, ∀ s ∈N, s ≥ 2, where grxrm,s(m,x) is consid-
ered according to Definition 2.1.

If s = 2 we have that Tm,2(x) = bm,2(m)x2 + rm,2(m,x), where
bm,2(m) = −m and rm,2(m,x) = mx. Assume that

Tm,n(x) = bm,n(m)xn + rm,n(m,x), grxTm,n(x) = n, grxrm,n(m,x) < n (2.10)

for ∀ n ∈ {2, 3, . . . , s} .
Taking (2.10) and Lemma 1.1 into account we have

Tm,s+1(x) = x(1− x)
[
T ′m,s(x) + msTm,s−1(x)

]
=

= x(1− x)
{

bm,s(m)sxs−1 + r′m,s(m,x)+

+ ms
[
bm,s−1(m)xs−1 + rm,s−1(m,x)

] }
,

so
Tm,s+1(x) = bm,s+1(m)xs+1 + rm,s+1(m,x) , (2.11)

where
bm,s+1(m) = −sbm,s(m)−msbm,s−1(m)

and

rm,s+1(m,x) = [s bm,s(m) + ms bm,s−1(m)]xs +

+
[
r′m,s(m,x) + msrm,s−1(m,x)

]
x(1− x) .

The relation (2.10) leads to the fact that bm,s+1(m) is not the identical null poly-
nomial, so β ∈N exists such that bm,s+1(β) 6= 0. It also results from (2.11) that
grxrm,s+1(m,x) < s + 1, hence (2.4) is true. �
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Theorem 2.2. Let m ∈ N∗ and s ∈ N. Then the following is true

Tm,s(x) = [x(1− x)][
s
2 ]

(
αm,sx + βm,s

)
m[ s

2 ] + pm,s(m,x) , (2.10)

αm,s =


0 , if s is even or s = 1

−(s− 1)!!
[ s
2 ]∑

k=1

(2k − 1)!!
(2k − 2)!!

, if s is odd, s ≥ 3,
(2.11)

βm,s =



1, if s = 0

0, if s = 1
(s− 1)!! , if s is even, s ≥ 2

1
2

(s− 1)!!
[ s
2 ]∑

k=1

(2k − 1)!!
(2k − 2)!!

, if s is odd, s ≥ 3

(2.12)

and grmpm,s(m,x) <

[
s

2

]
, where 0!! = 1 by definition.

Proof. For s = 0 or s = 1, relations (2.12)-(2.14) are true. Let s ∈ N, s ≥ 2. Consid-
ering (2.4) it results that in (2.12) it is necessary that αm,s = 0 for s even. We prove
(2.12) through induction after s. For s = 2, Tm,2(x) = [x(1− x)]

(
αm,2x + βm,2

)
m +

pm,2(m,x) ,where αm,2 = 0, βm,2 = 1 and pm,2(m,x) = 0.
Assume that Tm,n(x) = [x(1−x)][

n
2 ](αm,nx+βm,n

)
m[n

2 ]+pm,n(m,x), gradmpm,n(m,x) <[
n

2

]
, ∀ n ∈N, n ∈ {2, 3, . . . , s}.

According to (1.3), from Lemma 1.1 we obtain

Tm,s+1(x) = x(1− x)
[
T ′m,s(x) + msTm,s−1(x)

]
= x(1− x).{[[s

2

]
[x(1− x)][

s
2 ]−1(1− 2x)

(
αm,sx + βm,s

)
+ [x(1− x)][

s
2 ]αm,s

]
m[ s

2 ]+

+ p′m,s(m,x) + [x(1− x)][
s−1
2 ](αm,s−1x + βm,s−1

)
sm[ s−1

2 ]+1+

+ mspm,s−1(m,x)} = [x(1− x)][
s
2 ](1− 2x)

(
αm,sx + βm,s

) [s

2

]
m[ s

2 ]+

+ [x(1− x)][
s
2 ]+1αm,sm

[ s
2 ] + x(1− x)p′m,s(m,x)+

+ [x(1− x)][
s−1
2 ]+1

(
αm,s−1x + βm,s−1

)
sm[ s−1

2 ]+1 + x(1− x)mspm,s−1(m,x) .

This identity proves that if s is even, which means s = 2k, k ∈ N∗, we have

Tm,2k+1(x) = [x(1− x)]k
[
(1− 2x)kβm,2k + 2k

(
αm,2k−1 x + βm,2k−1

)]
mk+

+ x(1− x)
[
p′m,2k(m,x) + 2km pm,2k(x)

]
,

so

Tm,2k+1(x) = [x(1− x)][
2k+1

2 ] [(2k αm,2k−1 − 2k βm,2k

)
x+ (2.13)

+ k βm,2k + 2k βm,2k−1

]
m[ 2k+1

2 ]+

+ x(1− x)
[
p′m,2k(m,x) + 2km pm,2k−1(m,x)

]
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and so
αm,2k+1 = 2k αm,2k−1 − 2k βm,2k , ∀ k ∈ N, k ≥ 2 (2.14)

and
βm,2k+1 = k βm,2k + 2k βm,2k−1 , ∀ k ∈ N, k ≥ 2. (2.15)

Similarly, if s is odd, which means s = 2k + 1, k ∈ N∗, we have

Tm,2k+2(x) = [x(1− x)]k+1(2k + 1)βm,2kmk+1+ (2.16)

+ [x(1− x)]k(1− 2x)
(
αm,2k+1x + βm,2k+1

)
kmk+

+ [x(1− x)]k+1αm,2k+1m
k + x(1− x)

[
p′m,2k+1(m,x)+

+(2k + 1)pm,2k(m,x)]

and so
βm,2k+2 = (2k + 1)βm,2k , ∀ k ∈ N∗ . (2.17)

Relations (2.15) - (2.19) yield to the end of the induction.
Next, we determine αm,s, βm,s, s ∈ N, s ≥ 2.
Therefore Tm,2(x) = x(1 − x)m gives us that βm,2 = 1 and then from (2.19) we
obtain

βm,2n = (2n− 1)!!, ∀n ∈ N∗. (2.18)

From Tm,3(x) = x(1− x)(1− 2x)m, αm,3(x) = −2 and βm,3(x) = 1, follow.

Now, from (2.16), (2.17) and (2.20) it results that

am,2n+1 = −(2n)!!
n∑

k=1

(2k − 1)!!
(2k − 2)!!

(2.19)

and

βm,2n+1 =
1
2
(2n)!!

n∑
k=1

(2k − 1)!!
(2k − 2)!!

, (2.20)

for all n ∈ N∗.
Considering that αm,2n = 0, ∀ n ∈ N∗, (2.20) - (2.22) give (2.13) and (2.14) as
outcomes.

Because the numbers αm,s and βm,s from Theorem 2.2 does not depend on m,
Theorem 2.2 is reforming through Corollary 2.1. �

The results contained in Corollary 2.1, Corollary 2.2 and Corollary 2.3 are known
(see [2] or [3]).

Corollary 2.1. Let m ∈ N∗ and s ∈ N. Then

Tm,s(x) = [x (1− x)][
s
2 ] (αsx + βs) m[ s

2 ] + pm,s(m,x), (2.21)

αs =


0, if s is even or s = 1

−(s− 1)!!
[ s
2 ]∑

k=1

(2k − 1)!!
(2k − 2)!!

, if s is odd, s ≥ 3,
(2.22)
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βs =



1, if s = 0

0, if s = 1
(s− 1)!!, if s is even, s ≥ 2

1
2 (s− 1)!!

[ s
2 ]∑

k=1

(2k − 1)!!
(2k − 2)!!

, if s is odd, s ≥ 3

(2.23)

and grmpm,s (m,x) <
[

s
2

]
.

Corollary 2.2. If s ∈ N, then

lim
m→∞

Tm,s(x)

m[ s
2 ]

= [x(1− x)][
s
2 ]

(
αsx + βs

)
, ∀ x ∈ [0, 1] . (2.24)

Proof. Demonstration follows from Corollary 2.1. �

Corollary 2.3. Let s ∈N be an even number. Then

lim
m→∞

Tm,s(x)
m

s
2

=
{

1, if s = 0
[x (1− x)]

s
2 (s− 1)!!, if s ≥ 2

(2.25)

for all x ∈ [0, 1] .

Proof. Again, the proof is a consequence of Corollary 2.2. �
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