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Extensions of some Ceva type theorems in polygons

VASILE POP

ABSTRACT. A complete characterization of the concurrence conditions of some straight lines that
pass through the vertices of a triangle is given by Ceva Theorem. The problems connected with the
concurrence of some lines in polygons, polyhedrons or simplexes lead to the idea of the extension of
this result in other concurrence theorems.

INTRODUCTION

The theorems and problems referring to the concurrence of straight lines in the
triangle, rely essentially on the Theorem of Ceva, which gives a complete charac-
terization for the concurrence of some lines that pass through the vertices of the
triangle.

In the geometry of the triangle, the statement referring to the concurrence of
some straight lines, although diverse, can be considered classical problems. The
extension of some theorems and problems from triangles to other polygons open
a new field for the generalization of some known results. The purpose of this
paper is to present an extension of the most usual theorems, the general setting of
extension being the convex polygons with an odd number of sides.

1. PRELIMINARY NOTIONS AND RESULTS

The most known concurrence theorems in the triangle concern the concurrence
of some important lines: the concurrence of the medians, the concurrence of the
perpendicular bisectors of sides, the concurrence of the bisectors, the concurrence
of the heights and Ceva’s Theorem. We remind the statements of these theorem:

Theorem 1.1. In a triangle the perpendicular bisectors of sides are concurrent (in the
circumcenter of triangle).

Theorem 1.2. In a triangle the bisectors are concurrent (in the incenter of triangle).
Theorem 1.3. In a triangle the medians are concurrent (in the centroid of triangle).
Theorem 1.4. In a triangle the heights are concurrent (in the orthocenter of triangle).
Theorem 1.5. (Ceva’s Theorem) In a triangle ABC the cevians AA′, BB′, CC ′ are

concurrent if and only if it is satisfied the relation:

BA′

A′C
· CB′

B′A
· AC ′

C ′B
= 1.

The results synthesized in this paper are extensions of the previous theorems.
It is easy to see that any attempts to define the notion of median, height, cevian in
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a quadrilateral or in polygons with an even number of sides is unnatural. These
notions can be extended naturally for polygons with an odd number of sides.

Let P = [A1A2 . . . A2nA2n+1] be a convex polygon.
Definition 1.1. Is called median of P any straight line passing through a vertex

of a polygon P and the midpoint of opposite side. (The opposite side of the ver-
tex Ak is the side [Ak+nAk+n+1], the numbering being made with the convention
A2n+1+p = Ap.)

Definition 1.2. It is called height in the polygon P any straight line that passes
through a vertex of the polygon and is perpendicular on the support line of the
opposite side.

Definition 1.3.1. It is called bisector of the polygon P any bisector line of the
angle of the polygon (Â1A2A3, Â2A3A4, . . . , ̂A2n+1A1A2).

Definition 1.3.2. It is called ”interior bisector” in the polygon P the bisec-
tor lines of the angles ̂An+kAkAn+k+1, where Ak is a vertex of the polygon and
[An+kAn+k+1] is its opposite side.

Definition 1.4. It is called perpendicular bisector in the polygon P any straight
line that passes through the midpoint of a side and is perpendicular of it.

Definition 1.5. It is called cevian in the polygon P a straight line that links a
vertex of the polygon with a point of the opposite side.

2. THE CONCURRENCE OF BISECTORS AND PERPENDICULAR BISECTORS

Since the notion of inscribed and circumscribed polygon are well-known, we
confine ourselves to remind the natural extensions of Theorems 1.1 and 1.2 for
convex polygons with an arbitrary number of sides.

Theorem 2.1. In a convex polygon the bisector lines are concurrent if and only if the
polygon is circumscrible. (The intersection point of the bisector lines is the center of the
inscribed circle in polygon.)

Theorem 2.2. In a convex polygon the perpendicular bisectors of all sides are concur-
rent if and only if the polygon is inscrible. (The intersection point of the perpendicular
bisectors is center of the circumscribed circle of polygon.)

3. THE CONCURRENCE OF THE MEDIANS

One can easily construct examples of polygons with an odd number 2n + 1 ≥ 5
of sides, in which any three medians are not concurrent (a simple construction can
be given in a pentagon). This means that Theorem 1.1 cannot be extended in the
given form. That’s why we give an equivalent statement for the concurrence of
medians.

Theorem 1.1.(3) If two of the medians of a triangle have a common point G then the
third median passes through G.

The natural extension of this theorem to a polygon P with an odd number of
sides is now possible and we will show that it is true.

Theorem 3.1. If in a polygon P = [A1A2 . . . A2nA2n+1], 2n of the medians are con-
current at G, then the other median also passes through G.

Proof. We choose a system of coordinates with the origin at the point G, inter-
section of the medians from A1, A2, . . . , A2n and we denote a1, a2, . . . , a2n, a2n+1
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the vectors GA1, GA2, . . . , GA2n, GA2n+1 and by B1, B2, . . . , B2n, B2n+1 the mid-
points of the opposite sides. The condition that the points Ak, G,Bk are collinear
is equivalent to:

ak ×
1
2
(an+k + an+k+1) = 0, k = 1, 2n.

We obtain the system:

(1) : a1 × (an+1 + an+2) = 0
(2) : a2 × (an+2 + an+3) = 0

. . .
(n) : an × (a2n + a2n+1) = 0
(n + 1) : an+1 × (a2n+1 + a1) = 0
(n + 2) : an+2 × (a1 + a2) = 0

. . .
(2n) : a2n × (an−1 + an) = 0

Adding these equalities we notice that the product a1×an+1 from (1) reduced with
an+1×a1 from (n+1), a1×an+2 from (1) reduced with an+2×a1 from (n+2), . . . .
It rest only the products where a2n+1 appears (just on the second position in (n)
and first position in (n + 1)), and it follows that an × a2n+1 + an+1 × a2n+1 = 0 ⇔
a2n+1 × (an + an+1) = 0, so the points A2n+1, G,B2n+1 are collinear.

Remark 3.1. Following the analogy between the vectorial plane geometry and
the geometry of the complex plane, the theorem can be also proved using complex
numbers but the proof is not simple.

Remark 3.2. A variant of this problem was given to the Balcanic Olympiad in
1998 for a pentagon, but the proof is difficult for those which do not know the
general theorem about cevians (Theorem 6.1). The solution of this problem using
complex numbers can be found in [4].

4. THE CONCURRENCE OF THE HEIGHTS

One can easily imagine an example of polygon (pentagon) in which any three
heights are not concurrent. To extend the Theorem 1.4 we formulate the statement
in the form: Theorem 1.2.(4) If two of the heights of a triangle intersect at H , then the
third height passes through H .

With this statement, the theorem is extended in the form:
Theorem 4.1. If in the polygon P = [A1A2 . . . A2nA2n+1], 2n of the heights are

concurrent at H , then the other height also passes through H .
Proof. We choose in the polygons plane a system of axes with the origin at H and

we denote the vectors HA1 = a1, HA2 = a2, . . . , HA2n = a2n, HA2n+1 = a2n+1.
The condition HA1 ⊥ An+1An+2 is written a1 · (an+2 − an+1) = 0 or a1 · an+1 =
a1 ·an+2. In the same manner, from the conditions HA2 ⊥ An+2An+3, . . . , HA2n ⊥
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An−1An we obtain the system of relations:

(1) : a1 · an+1 = a1 · an+2

(2) : a2 · an+2 = a2 · an+3

. . .
(n) : an · a2n = an · a2n+1

(n + 1) : an+1 · a2n+1 = an+1 · a1

(n + 2) : an+2 · a1 = an+2 · a2

. . .
(2n) : a2n · an−1 = a2n · an

If we add all the equalities, the left-hand terms of the equalities (1), (2), . . . , (n)
reduced with the right-hand terms of the relations (n + 1), (n + 2), . . . , (2n) and
the left-hand terms of the equalities (n + 2), . . . , (2n) reduced with the right-hand
ones of the equalities (1), . . . , (n − 1). On the right remains the term an+1 · a2n+1

from (n + 1) and on the left remains the term an · a2n+1 from (n), so an · a2n+1 =
an+1 · a2n+1 or a2n+1 · (an+1 − an) = 0, which means that HA2n+1 ⊥ AnAn+1.

Remark 4.2. The problem was given at the Olympiad in Russia and can be
found in [1], problem R114 (R. Jenodarov).

For the polygons with even numbers of sides, the notion of ”height” and a sim-
ilar theorem with Theorem 4.1 was given by Gh. D. Simionescu [5].

Definition 4.3. If P = [A1A2 . . . A2n−1A2n] is a polygon with even number
sides, we call ”height” a straight line which passes through the midpoint of a side
[AkAk+1] and is perpendicular of the opposite side [An+kAn+k+1].

Theorem 4.4. If (2n− 1) ”heights” of a polygon with 2n sides are concurrent, then all
the 2n ”heights” are concurrent.

Proof. First we show that if Mk is the midpoint of side [Ak+1Ak+2] and H is an
arbitrary point in plane, then the following relation holds: (4)

HM1 ·An+1An+2+HM2 ·An+2An+3+· · ·+HA2n−1 ·An−1An+HA2n ·AnAn+1 = 0.

If we denote HAk = ak, k = 1, 2, . . . , 2n the relation (4) gives:

1
2

n∑
k=1

(ak + ak+1)(an+k+1 − an+k) = 0 ⇔

n∑
k=1

ak · ak+n+1 −
n∑

k=1

ak · ak+n +
n∑

k=1

ak+1 · ak+n+1 −
n∑

k=1

ak+1 · ak+n = 0

(the first sum is equal to the fourth, and the second to the third, because of
ak = ak+2n).
If we denote by H the intersection point of the ”heights” from M1,M2, . . . ,M2n−1,
then the first (2n− 1) terms from (4) are equal to zero, so the last term
HM2n · AnAn+1 = 0 or HM2n ⊥ AnAn+1. Then the straight line HM2n is a
”height”.

5. THE CONCURRENCE OF THE ”INTERIOR BISECTOR” LINES

Theorem 5.1. If in the polygon P = [A1A2 . . . A2nA2n+1], 2n of the ”interior bisec-
tor” lines are concurrent, then all the ”interior bisector” lines are concurrent.
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Proof. Let I be the intersection of ”interior bisector” lines of the angles with
the vertices A1, A2, . . . , A2n. We denote by ∆1 = A1An+1, ∆2 = A2An+2, . . . ,
∆2n = A2nAn−1, ∆2n+1 = A2n+1A1, the ”biggest” diagonals of the poly-
gons and by d1, d2, . . . , d2n, d2n+1 the distance from the point I to the diagonals
∆1,∆2, . . . ,∆2n,∆2n+1. Since the point I belongs to the bisector lines of the an-
gle ̂An+1A1An+2 we have d1 = dn+2 and writing the conditions that the first 2n
”interior bisector” lines pass through I , we obtain the relations:

(1) : d1 = dn+2

(2) : d2 = dn+3

. . .
(n− 1) : dn−1 = d2n

(n) : dn = d2n+1

(n + 1) : dn+1 = d1

(n + 2) : dn+2 = d2

. . .
(2n) : d2n = dn

If we add all the equalities we obtain dn+1 = d2n+1, hence the point I is on the
bisector lines of the angle ̂AnA2n+1An+1, the last ”interior bisector” line.

Remark 5.1. If the polygon P has the ”interior bisector” lines concurrent at I ,
then the ”biggest” diagonals determine a polygon circumscribed to a circle with
the center at I .

6. THE CONCURRENCE OF THE CEVIANS

Let P = [A1A2 . . . A2nA2n+1] be a convex polygon and the points B1 ∈
[An+1An+2], B2 ∈ [An+2An+3], . . . , B2n+1 ∈ [AnAn+1] on the sides opposite to
the vertices A1, A2, . . . , A2n+1.

Theorem 6.1. (Generalization of Ceva’s theorem) It the cevians A1B1, A2B2, . . . ,
A2nB2n, A2n+1B2n+1 are concurrent, then the following equality is satisfied:

An+1B1

B1An+2
· An+2B2

B2An+3
. . .

An−1B2n

B2nAn
· AnB2n+1

B2n+1An+1
= 1.

Proof. Let I be the intersection point of the cevians. We denote the angles
α1 = ̂An+1IB1, β1 = ̂B1IAn+2, α2 = ̂An+2IB2, β2 = ̂B2IAn+3, . . . , α2n+1 =

̂An+1IB2n+1, β2n+1 = ̂B2n+1IAn+2.
Obviously, we have the equality of the angles that are opposite

α1 = βn+1, α2 = βn+2, . . . , αn+1 = β2n+1, αn+2 = β1, . . . , α2n+1 = βn.

We express the fractions from the statement using areas:

An+1B1

B1An+2
=

σ(An+1IB1)
σ(B1IAn+2)

=
IAn+1 · IB1 · sinα1

IB1 · IAn+2 · sinβ1
=

IAn+1

IAn+2
· sinα1

sinβ1
.

In the same way we express the other rapports and we obtain:
An+1B1

B1An+2
· An+2B2

B2An+3
. . .

An−1B2n

B2nAn
· AnB2n+1

B2n+1An+1
=
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=

(
IAn+1

IAn+2
· IAn+2

IAn+3
. . .

IAn−1

IAn
· IAn

IAn+1

) (
sin α1

sin β1
· sin α2

sin β2
. . .

sin α2n

sin β2n
· sin α2n+1

sin β2n+1

)
= 1,

since in the first bracket at numerator and denominator appear all the length
IA1, IA2, . . . , IA2n, IA2n+1, and in the second bracket the angles (β1, β2, . . . , β2n+1) rep-
resent a circular permutation of the angles (α1, α2, . . . , α2n+1).

Remark 6.2. Theorem 6.1 can be found in a book for the preparation of the Bulgarian
olympic team.

7. THE CONCURRENCE OF THE HEIGHTS IN THE TETRAHEDRON

We noticed that in a quadrilateral the notion of height is not natural, but if we take the
four vertices not in the same plane we obtain a tetrahedron in which the heights are natural
defined. It is known that generally the heights of a tetrahedron are not concurrent (not even
two by two), the tetrahedron with the property that the heights are concurrent are particular
tetrahedron (called orthocentric) and they have many remarkable properties.

In the spirit of the previous theorem about polygons we searched something similar in
tetrahedrons and we obtain:

Theorem 7.1. If in a tetrahedron three of the heights are concurrent then all the heights are
concurrent.

Proof. Let ABCD be a tetrahedron and H the intersection of the heights from A, B and
C. We denote the vectors HA = a, HB = b, HC = c and HD = d. From HA ⊥ (BCD) we
have a · BC = 0, a · BD = 0 or a · (c − b) = 0 and a · (d − b) = 0, so a · c = a · b = a · d.
In the same way, from HB ⊥ (ACD) and HC ⊥ (ABD) follows b · a = b · c = b · d and
c · a = c · b = c · d. In conclusion a · b = a · c = a · d = b · c = b · d = c · d from which we keep
the relations d · a = d · b = d · c. Writing them in the form: d · (b− a) = 0 and d · (c− a) = 0

it follows d ⊥ AB, d ⊥ AC, so HD ⊥ (ABC).
Another extension of Theorem 1.4 in three dimensions was given by Simionescu [5].
Theorem 7.2. If in a pyramid with (2n + 1) faces, 2n edges are orthogonal on the opposite edges

of the bases, then the last edge is perpendicular on the opposite side.
Proof. One can prove easily that if P = [A1A2 . . . A2nA2n+1] is the base and S is the

vertex of the pyramid then:

SA1 ·An+1An+2 + SA2 ·An+2An+3 + · · ·+ SA2n ·An−1An + SA2n+1 ·AnAn+1 = 0.

Since the first 2n terms of the above relation are zero it follows that SA2n+1 ⊥ AnAn+1.
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