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An extension of some results on the degree of progress
to goal in self-organization process

MEMUDU O. OLATINWO

ABSTRACT. In this paper, we establish some results for the degree of progress to goal at any stage
during a self-organization process by considering several self-organizing systems with their corre-
sponding distance functions, gk(t), k = 1, 2, ..., s. We employ some properties of curve as well as
the convex combination of the distance functions to determine the degree of progress to goal at any
stage of the resulting self-organization process. The probability of reaching the goal at any stage of the
resulting self-organization process is considered as its degree or level of progress to goal during this
process.

The results obtained are in agreement with the axiomatic properties of probability.

1. INTRODUCTION

Adeagbo-Sheikh [1] in his model for self-organizing systems employed the
concepts of a distance function, g(t), and that of a controlled-disturbance function,
h(g(t)),(where t is the time variable) in explaining the views of some notable
thinkers as Ashby [2] and Beer [3].

In Olatinwo [8], the degree of progress to goal at any stage during self-
organization process was considered. The transition probabilities at various time
intervals were evaluated and then subsequently interpreted as the degrees of
progress to goal at such time intervals.

Given a set of self-organizing systems with each system self-organizing to a
distinct desired state of affairs, is it possible for all these systems to interact and
become a system that is self-organizing to a particularly desired state of affairs?
This question is answered in the affirmative in the next section.

In this paper, we generalize the results of Olatinwo [8] by considering a con-
vex combination of the various distance functions characterizing the various self-
organizing systems. Our results are established by using elementary concepts of
the probability and the curve theory as well as the idea of convex functions (see [5]
for detail). It is found that the results obtained are in agreement with the axiomatic
properties of probability.

The study becomes pertinent for its possible applications in diverse areas, es-
pecially in learning, adaptive control and pattern recognition systems. Literature
abounds with the theories of learning and invariably use statistical techniques. See
Fu and Mendel [6].

However, we shall require the following Lemmas in the sequel.
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Lemma 1. Let {gk(t)}s
k=1 be a set of the distance functions for s different self-organization

processes. Then,
∑s

k=1 λkgk(t) is a distance function for the resultant self-organization
process, where λ1, λ2, . . . , λs ∈ [0, 1] and

∑s
k=1 λk = 1.

Proof. Let

u(t) =
s∑

k=1

λkgk(t) = λ1g1(t) + λ2g2(t) + . . . + λsgs(t). (1)

We now show that u(t) is a distance function by showing that it satisfies all the
properties of a distance function stated in Olatinwo [8].

We show that u(t) > 0, t0 ≤ t < tf < ∞, where tf is the final time for the
completion of the self-organization process:
Since each gk(t), k = 1, 2, . . ., s, is a distance function, then each
gk(t) > 0, t0 ≤ t < tf < ∞, and so each λkgk(t) > 0, k = 1, 2, . . ., s, noting that
each λk > 0. Hence, u(t) > 0.

We now show that u′(t) < 0, t0 ≤ t < tf < ∞.
Differentiating u(t) in (1) with respect to t yields

u′(t) = λ1g
′
1(t) + λ2g

′
2(t) + . . . + λsg

′
s(t) =

s∑
k=1

λkg′
k(t). (2)

Since each gk(t), is a distance function, we have g′
k(t) < 0. Again, since each

λk > 0, we have each λkg′
k(t) < 0. It follows from (2) that u′(t) < 0.

Using (1), we obtain
u(tf ) = λ1g1(tf )+λ2g2(tf )+ . . .+λsgs(tf ) = 0, t0 < tf < ∞, since for the distance
functions gk(t), we have gk(tf ) = 0, k = 1, 2, . . ., s.
Finally, we have using (2) and triangle inequality that

|u′(t)| = |
s∑

k=1

λkg′
k(t)| ≤

s∑
k=1

λk|g′
k(t)| < ∞,

since λk > 0, |g′
k(t)| < ∞, k = 1, 2, . . ., s, t0 < t < tf < ∞.

Therefore, u(t) is a distance function. This completes the proof of the Lemma.

Lemma 2. Let δ(x) be continuous on [a, b] ⊂ R. Then,
∫ x

a
||δ(u)||du is the length of a

certain curve from a to x.

Proof. Since δ(x) is continuous on [a, b], there exists a differentiable func-
tion ρ(x) on (a, b) such that

ρ(x) =
∫ x

a

δ(u)du, x ∈ [a, b]. (3)

Applying the Fundamental Theorem of Integral Calculus in equation (3) yields

ρ′(x) =
d

dx

∫ x

a

δ(u)du = δ(x),

from which we obtain
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||δ(x)|| = ||ρ′(x)||. (4)
Integrating both sides of eqn(4) yields∫ x

a

||δ(u)||du =
∫ x

a

||ρ′(u)||du.

Since
∫ x

a
||ρ′(u)||du is the length of the curve ρ(x) from a to x, then

∫ x

a
||δ(u)||du is

indeed the length of a certain curve from a to x.
This completes the proof of the Lemma.

Remark 1. The proof of this Lemma is also contained in Olatinwo [9].

2. MAIN RESULTS

We recall that the distance function, g(t), according to Adeagbo-Sheikh [1], is
the distance from the goal at any time satisfying the following properties:

(i) g(t) > 0, t0 ≤ t < tf < ∞, (ii) g′(t) < 0, t0 < t < tf < ∞,

(iii) g(tf ) = 0, t0 < tf < ∞, (iv) |g′(t)| < ∞, t0 < t < tf < ∞,

where tf is the final time.

Without loss of generality, our self-organizing systems are considered to be in
the sense of Ramon-Margalef (see Beer [3]). The property(ii) of g(t) shows that
it is (strictly)monotone decreasing. The system begins to self-organize towards
some desired state of affairs at time t0 and the self-organization process reaches
completion at time tf (i.e. g(tf ) = 0 ), see property (iii) and Olatinwo[8] for detail.

Recall that the length l(t) of a curve f(t) (see Bruce and Giblin [4] as well as
Olatinwo [8, 9]) is given by

l(t) =
∫ t

t0

||f ′(u)||du. (5)

We see easily that l(t0) = 0 and l(t) > 0, for t > t0.
We assume that the curve f(t) is regular.

Definition 1. Let Xk be the event that a self-organizing system attains a stage Pk

at time tk during self-organization process. Then, the probability of this event is
given by

Prob {Xk} =
l(tk)
l(tn)

, k = 0, 1, 2, ..., n . (6)

This definition is also contained in Olatinwo [8, 9].

Our main results are the following:

Theorem 1. Suppose that [t0, tk] and [t0, tn] are two given time intervals such that
[t0, tk] ⊆ [t0, tn]. Let

∑s
i=1 λigi(t), with

∑s
i=1 λi = 1, λi ∈ [0, 1],

i = 1, 2, . . ., s, be as in Lemma 1, where g1(t), g2(t), . . ., gs(t) are the individual dis-
tance functions for s different self-organization processes. Let Xk be the event that the
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self-organizing system having the distance function
∑s

i=1 λigi(t) attains a stage Pk at
time tk during self-organization. Then,

Prob {Xk} =

∑k
j=1

∫ tj
tj−1

[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du∑n

j=1

∫ tj
tj−1

[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du

, (7)

where δ(t) is some continuous function on [t0, tn] such that

0 ≤ δ(t) ≤ ||δ(t)|| <
s∑

i=1

λi||g′
i(t)||, k ≤ n, k, n ∈ {1, 2, . . .} .

Proof. Let f(t) =
∑s

i=1 λigi(t). By Lemma 1, we have that f(t) is a distance
function. We obtain by (5) and (6) that

Prob {Xk} =

∫ tk
t0
||f ′(u)||du∫ tn

t0
||f ′(u)||du

=

∫ tk
t0
||

∑s
i=1 λig′

i(u)||du∫ tn
t0
||

∑s
i=1 λig′

i(u)||du
, (8)

where
df

dt
= f ′(t) =

s∑
i=1

λig
′
i(t).

We obtain by the triangle inequality that

||
s∑

i=1

λig
′
i(t)|| ≤

s∑
i=1

λi||g′
i(t)||, sinceλi ∈ [0, 1], i = 1, 2, . . ., s. (9)

Addition of ||δ(t)|| to the left-hand side of (9) yields

||
s∑

i=1

λig
′
i(t)|| =

s∑
i=1

λi||g′
i(t)|| − ||δ(t)||. (10)

Integrating both sides of (10) from t0 to tk yields∫ tk

t0

||
s∑

i=1

λig
′
i(u)||du

∫ tk

t0

(
s∑

i=1

λi||g′
i(u)|| − ||δ(u)||)du (11a)

=
∫ tk

t0

s∑
i=1

λi||g′
i(u)||du−

∫ tk

t0

||δ(u)||du.

Similarly, we obtain from (10) that∫ tn

t0

||
s∑

i=1

λig
′
i(u)||du =

∫ tn

t0

s∑
i=1

λi||g′
i(u)||du−

∫ tn

t0

||δ(u)||du. (11b)

By Lemma 2,
∫ tk

t0
||δ(u)||du and

∫ tn

t0
||δ(u)||du are lengths of a certain curve δ(t)

from t0 to tk and from t0 to tn respectively, so that both
∫ tk

t0
||

∑s
i=1 λig

′
i(u)||du

and
∫ tn

t0
||

∑s
i=1 λig

′
i(u)||du in (11a) and (11b) are well-defined as the lengths of

curve f(t) from t0 to tk and from t0 to tn respectively. Substituting both (11a)
and (11b) in (8) yields
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Prob {Xk} =

∫ tk
t0

∑s
i=1 λi||g′

i(u)||du−
∫ tk
t0
||δ(u)||du∫ tn

t0

∑s
i=1 λi||g′

i(u)||du−
∫ tn
t0
||δ(u)||du

=

∫ tk

t0
(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||)du∫ tn

t0
(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||)du

. (12)

Application of the fact that finite union of intervals can be split up into disjoint
ones (see Kai Lai [7] and Olatinwo [8, 9]) yields from (12)

Prob {Xk} =

=

∫ t1
t0

[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du + ... +

∫ tk

tk−1
[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du∫ t1

t0
[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du + ... +

∫ tn

tn−1
[
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||]du

=

∑k
j=1

∫ tj

tj−1
(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)|| )du∑n

j=1

∫ tj

tj−1
(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)|| )du

This completes the proof of the Theorem.

Remark 2. Theorem 1 is a generalization of Theorem 2A in Olatinwo [8], since it
reduces to Theorem 2A when s = 1 and ||δ(t)|| = 0.
Suppose that we have s self-organizing systems such that there are m subsystems
in each self-organizing system. Suppose that

{A11, A12, ..., A1m} , {A21, A22, ..., A2m} , . . ., {As1, As2, ..., Asm}

are the corresponding sets of activities for the m subsystems in each of the self-
organizing systems and

(y11(t), y12(t), ..., y1m(t)), (y21(t), y22(t), ..., y2m(t)), ..., (ys1(t), ys2(t), ..., ysm(t))

are the vectors whose components measure the level or aggregate effects of respec-
tive activities from time t0 ≥ 0 to time t.

In this paper, we shall assume a convex combination of the corresponding com-
ponents of the vectors. Thus, if {B1, B2, ..., Bm} is the corresponding overall set of
activities for the resulting self-organizing system, then we have

(α1y11(t) + α2y21(t) + ... + αsys1(t), α1y12(t) + α2y22(t) + ...+

+... + αsys2(t), ..., α1y1m(t) + α2y2m(t) + ... + αsysm(t)),
with

∑s
j=1 αj = 1, as the corresponding vector whose components measure the

level or aggregate effects of respective activities from time t0 ≥ 0 to time t in
the resulting self-organizing system. We are interested in finding the level of
contribution or efficiency of each subsystem from time t0 to time tn during
self-organization process. We then employ it to find the probability for the overall
level of the self-organization process. This idea is summarized in the next two
results.
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Theorem 2. Let Xq be the event that the subsystems have aggregate effects
s∑

j=1

αjyjq(t), q = 1, 2, . . . ,m,
s∑

j=1

αj = 1,

in the time interval [t0, tn] during self-organization process. If Bq,
q = 1, 2, . . .,m are the corresponding activities over the same time interval, then,

Prob {Xq} =

∑n
j=1

∫ tj
tj−1

(
∑s

i=1 αj||y′
iq(u)|| − ||ϕ(u)|| ) du∑n

j=1

∫ tj
tj−1

(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)|| ) du

, (13)

where ϕ(t) ≥ 0 and δ(t) ≥ 0 are continuous functions on [t0, tn] such that

0 ≤ δ(t) ≤ ||δ(t)|| <
s∑

i=1

λi||g′
i(t)||

and

0 ≤ ϕ(t) ≤ ||ϕ(t)|| ≤
s∑

i=1

αi||y′
iq(t)||, q = 1, 2, ...,m.

Proof. Let hq(t) =
∑s

i=1 αiyiq(t). Then,

||h′
q(t)|| = ||

s∑
i=1

αiy
′
iq(t)|| ≤

s∑
i=1

||αiy
′
iq(t)|| =

s∑
i=1

|αi| ||y′
iq(t)|| =

s∑
i=1

αi||y′
iq(t)||,

(14)
since αi ∈ [0, 1], i = 1, 2, ..., s.
Addition of ||ϕ(t)|| to the left-hand side of the inequality (14) yields

||h′
q(t)|| =

s∑
i=1

αi||y′
iq(t)|| − ||ϕ(t)|| (15)

Integrating both sides of (15) from t0 to tn yields∫ tn

t0

||h′
q(u)||du =

∫ tn

t0

s∑
i=1

αi||y′
iq(u)||du−

∫ tn

t0

||ϕ(u)||du. (16)

By applying Lemma 2, we have that
∫ tn

t0
||ϕ(u)||du is the length of a certain

curve ϕ(t) from t0 to tn so that
∫ tn

t0
||h′

q(u)||du in (16) is well-defined as the length
of curve hq(t) from t0 to tn. Hence, substituting both (11b) and (16) in (6), we have

Prob {Xq} =

∫ tn
t0
||h′

q(u)||du∫ tn
t0
||

∑s
i=1 λig′

i(u)||du

=

∫ tn

t0

∑s
i=1 αi||y′

iq(u)||du −
∫ tn

t0
||ϕ(u)||du∫ tn

t0

∑s
i=1 λi||g′

i(u)||du −
∫ tn

t0
||δ(u)||du

=

∫ tn

t0
(
∑s

i=1 αi||y′
iq(u)|| − ||ϕ(u)||)du∫ tn

t0
(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||)du

(17)
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Application of the fact that finite union of intervals can be split up into disjoint
ones(as in Theorem 1) yields from (17) the desired result given by (13).

Remark 3. Theorem 2 is a generalization of Theorem 2B in Olatinwo [8], since this
reduces to Theorem 2B when s = 1 and ||ϕ(t)|| = ||δ(t)|| = 0.
Theorem 3. Suppose that the overall subsystems are independent with corresponding
activities Br, r = 1, 2, . . .,m and let

∑s
j=1 αjyjr(t),

r = 1, 2, . . .,m,
∑s

j=1 αj = 1, be the corresponding aggregate effects in the time in-
terval [t0, tn] during self-organization. Let Xr, r = 1, 2, . . .,m be the event that the
subsystems have aggregate effects

∑s
j=1 αjyjr(t) over the time interval [t0, tn] during

self-organization process. Then,

Prob

{
m⋂

r=1

Xr

}
=

∏m
r=1

∑n
j=1

∫ tj
tj−1

(
∑s

i=1 αi||y′
ir(u)|| − ||ϕ(u)|| )du

[
∑n

j=1

∫ tj
tj−1

(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)|| )du ]m

, (18)

where the functions ϕ(t) and δ(t) are as in Theorem 2.

Proof. By Theorem 2, we have that

Prob {Xr} =

∑n
j=1

∫ tj
tj−1

(
∑s

i=1 αi||y′
ir(u)|| − ||ϕ(u)|| )du∑n

j=1

∫ tj
tj−1

(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)|| )du

, r = 1, 2, . . .,m. (19)

Since the subsystems are independent, then X1, X2, . . . , Xm are independent
events. Therefore,

Prob

{
m⋂

r=1

Xr

}
= Prob {X1}Prob {X2} . . . Prob {Xm} . (20)

Substituting (19) in (20) yields the desired result given by (18).

Remark 4. Theorem 3 is a generalization of Theorem 2C in Olatinwo [8], as it re-
duces to Theorem 2C when s = 1 and ||δ(t)|| = ||ϕ(t)|| = 0.

Remark 5. However, if the subsystems are mutually exclusive rather than being
independent, with the same aggregate effects

∑s
j=1 αjyjr(t) over the same time

interval during self-organization process, then it is obvious that

Prob

{
m⋃

r=1

Xr

}
=

∑m
r=1

∑n
j=1

∫ tj
tj−1

(
∑s

i=1 αi||y′
ir(u)|| − ||ϕ(u)|| )du∑n

j=1

∫ tj
tj−1

(
∑s

i=1 λi||g′
i(u)|| − ||δ(u)||)du

,

where
⋂m

r=1 Xr = φ (i.e. empty set) and Prob {
⋂m

r=1 Xr} = 0.
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