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Some applications of statistical information theory

LEA SKROVANKOVA AND LIBUSA REVESZOVA

ABSTRACT. The purpose of this paper is to present a short survey of applications in game theory.
We will show how the optimization modelling can be used to derive in a unified way classical solution
concepts to cooperative n-person games as well as to new solution concepts.

1. INTRODUCTION

During the past years many researchers have examined the application of en-
tropy and generalized entropy functionals in different fields. We mention here
works on entropy optimization problems over constraints sets via mathematical
programming techniques, applications in a diversity of problems such as traffic
engineering, information - communication theory and in many economic and fi-
nance models.

Statistical information theory has been developed in the early 1950s. In sta-
tistical concepts it is known as the Shannon entropy and the associated Kullback-
Leibler divergence measure or relative entropy between probability measures. These
probability measures are characterized via the maximum entropy principle. Since
many distribution functions cannot be derived by maximizing the classical Shan-
non entropy, several authors proposed more general concepts of relative entropy.
One of them due to Czisar is known in the literature as ®-divergence.

While the concept of entropy in works of these and other authors was origi-
nally restricted to information theory and statistics it was later used in optimiza-
tion modelling for various problems of management science and engineering.

2. FOUNDATIONS OF INFORMATION THEORY AND PRINCIPLES OF MAXIMUM
ENTROPY AND MINIMUM RELATIVE ENTROPY

It is generally known that the amount of information and the amount of un-
certainty are inversely related. A classical measure of information introduced by
Fisher is known as variance-covariance measure and was developed under as-
sumption of normal distribution.

Consider the problem of estimating a probability distribution given only partial
information on the distribution. If the partial information is based on a random
sample drawn from a population following the unknown distribution, a Bayesian
construction might provide the mode of the posterior distribution as a best es-
timate. However, when the partial information consists instead of deterministic
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constraints on the known distribution it seems that no one best estimate can be
selected from the set of distributions consistent with the information.

Based on the classical Shannon entropy in the 1950 is a principle of maximum
entropy has been introduced. Its main idea is to choose a probability distribu-
tion of maximum entropy H (g) among those consistent with the constraints. This
choice is justified with a correspondence principle demonstrating that in the gen-
erating distribution were the uniform distribution, then the maximum entropy es-
timate was the most likely empirical distribution among these consistent with the
constraints. This principle has been generalized using KullbackLeibler separator
I(g, p) between two distributions ¢ and p to the principle of minimum relative en-
tropy. This principle reduces to maximum entropy estimate when p is the uniform
distribution.

Relative entropy can be used as a procedure for updating the distribution func-
tion of one or more random variables. This procedure has its origin in a related
inference rule known as the principle of maximum entropy. The rule is applied
to estimate a distribution function under given constraints on that function. These
constraints present the information available to the decision maker. The distribu-
tion that is maximally informative but still satisfies the constraints.

Suppose X assumes values in X* = (zg,1,...,%m). Let P(X = x;) = p; and
I(z;) be a measure of the information contained in a message that X = x;. If
for two experiments on X* represented by X; and X, it is true that I(z; A zj) =
I(l’l)+l(£€]) when P(X1 = X, X2 = l‘j) = Pi'Dj and I(l‘z) > Oforalli = 0, 1, e, m,
then I(z;) = —k-log p;, where k is a constant. For our purposes I(z;) = —Inp;. For
this discrete distribution, a measure of information or uncertainty is the expected
information gained when it is known that X = z; fori=0,1,..., m, or

H(P):*Zpi'lnpi- 1)

=0

The expression (1) is known as the entropy of p = (po, . .., pm ). If the inference
problem is to estimate a distribution that corresponds to a convex constraint set,
say A, then the principle of maximum entropy prescribes the H (p) in equation (??)
subject to p € A and sum of p; equal to 1.

The principle of minimum relative entropy is a more general inference pro-
cedure. Suppose a decision maker initially believes P(X = x;) = p;, i =0, ...,
m. Additional information in the form of a convex constraint set A becomes avail-
able and p ¢ A. The principle of minimum relative entropy requires selecting
q=(qo,- -, Gm, which minimizes

I(g.p) = gqi -In (;) 2

subject to ¢ € A and sum of ¢; equal to 1. Clearly, the principle of minimum
1
relative entropy and maximum entropy are equivalent when p = L Relative
m

entropy minimization is the more general procedure that admits an initial or prior
distribution.
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If there are certain characteristics of the distributions which are presumed known,
then these can be incorporated as constraints into the analysis. In such a case as
it was shown in [2] and [3] the minimization of I(g, p) subject to these constraints
results in a convex programming problem with a related duality theory. This can
simplify computations and provide interesting interpretations. The constrained
minimum I*(q, p) is called minimum discrimination information (MDI) statistic.
It gives the expected amount of information that an observation X yields in fa-
vor of the distribution p as opposed to the distribution ¢. Minimizing I(q, p) for
discrimination between probability distributions p and ¢ subject to any constraints
results in estimates (say p*). In many cases these estimates are also maximum
likelihood estimates. Moreover, as the sample size increases the asymptotic dis-
tribution theory for the MDI value I*(g,p) leads to a chi squared test of the null
hypothesis that p and ¢ are identical.

Thus estimation and hypothesis can be achieved simultaneously. If we sup-
pose a discrete probability distribution p = (p1, ..., pn,), the constrained minimum
I*(q, p), (MDI) can be written as the following convex programming problem:

Minimize I(gq,p) = Zpi I (Iq:) ¥
i=1 ’

subject to

m
Zamp229j7 j:]-v"'anv
i—1

m
Y pi=1, pi=0, i=1,..m,
i=1

where probabilities g; and constraint values 6 are constants. A generalization of the
relative entropy concept called ®-divergence has been introduced by Czisar. Now
we summarize some of its basic properties. Let be a given differentiable convex
function defined on an interval I C R, containing the interval [0, 1] and such that
®(0) = (1) = 0. Let

P:{peR”: Zpizl, piZO}

i=1

be the set of finite discrete probability measures associated with discrete random
variables taking a finite number of values. For p € P, ®-entropy functional is

defined as

Ha(p) = =) ®(pi). 4)
i=1

(4) It can be easily verified that Hs (p) is a continuous function of its n variables
and is invariant under permutations. Besides
1. He(p) > 0 with equality if p is degenerate,

,i=1,...,m.

1 1
) < . ity if p; —
2. Hp(p) < —m P () with equality if p ooy
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Associated with the ®-entropy Hg is the ®-divergence functional

o) =3 o (2) 6)
i=1 g

where z, y € Pand dom ® = R™.

The concept of ®-relative entropy has been developed as a generalization of var-
ious entropy type functionals widely used in probability theory and statistics. If,
for example, we replace kernel ®(-) in (5) by tlog t or (1 —t)?, we recover Kullback-
Leibler discrimination measure or chi squared-divergence. The choice of I3 (z,y)
as a measure of distance between two probability distributions is supported by the
fact that (5) is well defined and nonnegative, it is equal to zero if and only if z; = y;
for all 5. Moreover Iy is convex in each of its arguments. Note, however, that I5 is
not a distance in the usual sense. Now we turn our attention to some applications
of these concepts in game theory.

3. APPLICATIONS TO SOLUTION CONCEPTS OF COOPERATIVE GAMES

First we briefly describe basic notations used in n-person cooperative games.
Let (N, v) be a game in characteristic function form, where N = {1,2, ..., n} is the
set of players and v is normalized (strictly positive) characteristic function given
by the payoff vector (imputation) = (z1,...,2,) and v(S) > 0 is its value for
the coalition S (any subset of N). Let z(S) be the sum of the payoffs z; to players
i in coalition S, w; > 0 be the weight associated with player ¢, v; = v({i}) and
z(N) = v(NV) be the sum of payoffs z; to all players i € N, the grand coalition
value.

Solutions of n-person cooperative games are in general given as a vector of pay-
offs to the individual players. As is known several solution concepts to cooperative
games have been proposed in literature. There are also various ways of determina-
tion of such solutions. Besides other methods some of these solution concepts can
be determined by solving a corresponding mathematical programming problem.
For example, to determine the nucleolus of a characteristic function game Schmei-
dle used a finite sequence minimization problems. Charnes showed that both core
and the Shapley value as solution concepts of cooperative games are special con-
vex nucleus solutions.

Later the authors of [1] for n-person game solution studied a special class of
problems in which the functional to be minimized is based on ®-divergence. Such
an approach allows to derive in a unified way classical solution concepts to coop-
erative games as well as to generate new solution concepts.

If we assume that the used ®-functionals have properties described above, the
problem of determining solution concepts to a cooperative game is to find an z

solving
. Z;
1516151 = Z w; v; P (%) 6)
iEN
subject to
Ax =0,

2(N) = o(N),
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where I = dom ®, A is an m x n matrix and equations Az = b represent conditions
on z corresponding to the particular solution concept. Some solution concepts can
be directly derived by setting a concrete form of the kernel function ® in (6). For
example, if we set ®(t) = (1 — ¢)?, w; = g; for all i € N and assume no specific
constraints on z (i. e. A = 0, b = 0), then the problem becomes

min{Z(qi —z;)?: z(N) = U(N)}.

In this case ¢(S) is the homomollifier of the characteristic function v(S) and ¢; =
q({i}).

Some solution concepts to cooperative games are given by extremal principles
that apply to the (2" — 1)-dimensional space of the characteristic function vector
v(S). A number of formulations given by problem (6) can be applied in such in-
stances. One such a modified formulation can be written as

min= > w(S)v(S) & (ig;) @)

SCN

subjectto Ax =0, Bz > b, (N) = v(N).
Here A is an (m — n) x m matrix and Az = 0 defines the relations

z(S) = Z X5,
i€S
where m = 2" — 1 is the number of coalitions in an m-person game. Choosing, for

example, ®(¢t) =t In E, B =0, b = 0in problem (7) the weighted entropic solution

can be obtained (see fS], [61, [7], [8], [9)).

Finally we consider the Shapley value as a solution concept of cooperative games.
Besides the classical formula introduced by Shapley (see [4]) this value can be de-
termined as the solution of the following convex programming problem

min = { Z [v(S) — ()] w(S) : z(N) = U(N)} 8)
SCN
~1
where w(S) = (Z: f) forall S € N, S # N and s denotes the number of

players in coalition S.
Turning to the ®-divergence, it is easy to show that the problem (8) is a special
case of the general formulation (7), if we set ®(¢) = (1 — ¢)2, B=0,b = 0and

-1
w(S) = (’;:f) (S), forall S C N,
w(S) =1, if § = N.

It is clear that one can derive other solution concepts to n-person cooperative
games by picking different kernel functions .
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