
113

CREATIVE MATH. & INF.
15 (2006), 113-116

A filtering servlet for improving the security of e-mail
addresses

OVIDIU COSMA

ABSTRACT. Spam is a phenomenon that grows each day, because e-mail addresses are easy to get. It is relatively
simple to write a spider program to search, index and validate the e-mail addresses published in the Internet. This
article presents a filter for HTTP servers, that masks the e-mail addresses in both the static and dynamically created
documents, leaving them visible only for the clients.

1. INTRODUCTION

The spam phenomenon is growing each day, because e-mail addresses are easy to get. It
is relatively simple for anyone to build a database of e-mail addresses, because the majority
of them are presented in HTML documents that are published in the Internet. For this purpose
a spider application can be built, to automatically search and store e-mail addresses. They can
be easily recognized, because of the ‘@’ character in their format.

The spider applications are based on the HTTP protocol, which specifications can be
found in [3]. There are also several spiders available for download in the Internet.

The e-mails can be easily verified, because the SMTP [2] protocol allows their
validation, without actually sending e-mail messages. For this purpose, it is sufficient to open
a connection on port 25 with the host that runs the SMTP server, then send the following
messages:

HELO <some client domain>
MAIL FROM: <some return e-mail address>
RCPT TO: <e-mail to be verified>

The server response after the last message can be 250 OK which means that the address exists
on the server, or 550 followed by an error message in the case that the address is incorrect.

For the spammers that do not want to bother to run a spider application, there are several
offers of huge databases of e-mail addresses in the Internet. It is relatively difficult for
someone to stop unwanted messages, once his e-mail address was added to such a database.
There are several applications built for blocking doubtful messages, based on sender, subject
or content, but they are far from perfect.

Received: 11.09.2006. In revised form: 21.10.2006.
2000 Mathematics Subject Classification. 94A99
Key words and phrases. Spam, servlets, filters, mask e-mail addresses.

114

This article presents a filtering servlet that masks the e-mail addresses from the
documents send by HTTP servers, in such a way that they can be presented on the client
applications screens, but are unrecognizable for the spiders. The basic idea is that information
can be somehow hidden from automatic computer programs, by inserting it in a distorted
image.

The new HTML pages could be built using this artifice. E-mail addresses should be
inserted in images, and never specified in clear text.

The filter presented in this paper is useful for improving the security of the existing
HTML pages. It changes the format of all the e-mail addresses sent by the HTTP server, by
replacing the ‘@’ character with an image, in order to mask them from spider applications.

2. FILTERING THE HTTP SERVER’S RESPONSES

The filtering servlet is based on the following three classes: GenericFilter,
GenericResponseWrapper and EmailFilter.

The GenericFilter class is a minimal implementation of the Filter interface, according to
the Java Servlet Technology specification [1], [4].

//class GenericFilter
//-------------------
import javax.servlet.*;
import java.io.IOException;

public class GenericFilter implements Filter{
 private FilterConfig filterConfig;
 public void doFilter(final ServletRequest request,
 final ServletResponse response, FilterChain chain)
 throws IOException, ServletException{
 chain.doFilter(request,response);
 }
 public FilterConfig getFilterConfig(){
 return filterConfig;
 }
 public void init(FilterConfig config){
 this.filterConfig = config;
 }
 public void destroy(){
 this.filterConfig = null;
 }
}

The GenericResponseWrapper class is responsible for directing the HTTP server’s
response to a CharArrayWriter output stream, for future analysis. This class contains besides
the constructor, a method for converting the response to the String type, and the getWriter
method that is called by the next filter to find out where to send its output data. All the other
necessary methods are implemented in the HTTPServletResponseWrapper class in the
javax.servlet.http package [1], [4].

//class GenericResponseWrapper

115

//--------------------------------
import javax.servlet.http.*;
import java.io.*;
public class GenericResponseWrapper extends HttpServletResponseWrapper{
 CharArrayWriter output;
 public GenericResponseWrapper(HttpServletResponse response){
 super(response);
 output=new CharArrayWriter();
 }
 public String toString(){
 return output.toString();
 }
 public PrintWriter getWriter(){
 return new PrintWriter(output);
 }
}

The EmailFilter class adds to the GenericFilter class the necessary functionalities for
masking the e-mail addresses. The filtering operations are performed by the doFilter method,
that overrides a method defined in the GenericFilter class.

//class EmailFilter
//-----------------
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.HttpServletResponse;
public class EmailFilter extends GenericFilter {
 public void doFilter(final ServletRequest request,
 final ServletResponse response, FilterChain chain)
 throws IOException, ServletException{
 PrintWriter out=response.getWriter();
 GenericResponseWrapper responseWrapper = new
 GenericResponseWrapper((HttpServletResponse) response);
 chain.doFilter(request, responseWrapper);
 String responseData=responseWrapper.toString();
 CharArrayWriter filteredContent=new CharArrayWriter();
 int left=0, right;
 while((right=responseData.indexOf('@',left))!=-1){
 //replace all ‘@’ characters with images
 filteredContent.write(responseData.substring(left,right));
 filteredContent.write("");
 left=right+1;
 }
 //copy the end of the page (after the last ‘@’)
 filteredContent.write(responseData.substring(left,
 responseData.length()));
 //set the content length of the response
 response.setContentLength(filteredContent.toString()
 .length());
 //send the filtered response
 out.write(filteredContent.toString());
 out.flush();
 out.close();
 }
}

The next image presents a UML diagram that indicates the relations between the classes
of the e-mail filter.

116

javax.servlet.http.
HttpServletResponseWrapper

java.io.
PrintWriter

java.io.
CharArrayWriter

java.lang.
String

javax.servlet.http.
HttpServletResponse

javax.servlet.
FilterConfig

javax.servlet.
Filter

java.io.
IOException

java.lang.
Object

javax.servlet.
FilterChain

javax.servlet.
ServletException

javax.servlet.
ServletRequest

javax.servlet.
ServletResponse

GenericFilter

-filterConfig

+destroy()

+doFilter()

+init()

GenericResponseWrapper

-output

+GenericResponseWrapper()

+getWriter()

+toString()

EmailFilter

+doFilter()

3. CONCLUSIONS AND FUTURE WORK
A more sophisticated implementation would replace all the characters in the e-mail

addresses with images, or would represent each e-mail address with a single image. In this
case, the image encoder presented in [5] could be used. Eventually the images generated for
representing e-mail addresses could be distorted by adding some noise, to make them even
harder to be interpreted by computer applications.

The solution presented in this paper has a single disadvantage: the visitors of the filtered
HTML pages will not be able to send e-mail messages with a single mouse click, and will
have to complete the destination e-mail addresses by hand. But this is a fair price for the
benefits of the enhanced security of the e-mail addresses.

REFERENCES
[1] Eric Armstrong, Jennifer Ball, Stephanie Bodoff, Debbie Bode Carson, Ian Evans, Dale

Green, Kim Haase, Eric Jendrock, The J2EE™ 1.4 Tutorial For Sun Java System
Application Server Platform Edition, Sun Microsystems 2005

[2] IETF, RFC 821 (SMTP), www.ietf.org
[3] IETF, RFC 2068 (HTTP 1.1), www.ietf.org
[4] Jason Hunter, Servlet 2.3: New features exposed, Java World, june 2001
[5] Jef Poskanzer, Gif Encoder, http://www.acme.com

NORTH UNIVERSITY OF BAIA MARE
DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE
VICTORIEI 76, 430122 BAIA MARE, ROMANIA
E-mail address: cosma@alphanet.ro

http://www.ietf.org/
http://www.ietf.org/
http://www.acme.com/

