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On some identities for means in two variables

ZDRAVKO F. STARC AND OVIDIU BAGDASAR

ABSTRACT. In this paper we give some identities which are obtained by using the integral repre-
sentation for some well known means.

1. INTRODUCTION

Let a, b be two positive numbers such that 0 < a < b. The arithmetic mean
of a and b is defined by A(a, b) = a+b

2 , the geometric mean G(a, b) = (ab)
1
2 , the

harmonic mean H(a, b) = 2ab
a+b , the identric mean I(a, b) = 1

e · (
bb

aa )
1

b−a , and the
logarithmic mean L(a, b) = b−a

ln b−ln a . We also use the power mean of order t for

the numbers a and b, that is At(a, b) =
(

at+bt

2

) 1
t

, for t > 0. These means are also
defined in [3] with some properties. We use the integral representations of some of
the means.

ln I(a, b) =
1

b− a

∫ b

a

lnxdx, (1)

1
L(a, b)

=
1

b− a

∫ b

a

1
x

dx, (2)

A(a, b) =
1

b− a

∫ b

a

xdx, (3)

1
G(a, b)2

=
1

b− a

∫ b

a

1
x2

dx, (4)

At(a, b) =

(
t

bt − at

∫ b

a

x2t−1dx

) 1
t

, t > 0. (5)

Using the property of additivity to the interval for the integral, i.e.
∫ b

a
=
∫ c

a
+
∫ b

c
,

for a < c < b, (and c properly chosen) in (1) − (5), we obtain some identities for
means of two variables.
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2. MAIN RESULTS

In this section we obtain some identities that are connecting the means pre-
sented above. The first theorem gives a relation between the geometrical and the
identric mean of two positive numbers.

Theorem 2.1. Consider the positive numbers a, b such that 0 < a < b. With the defi-
nitions mentioned above for the identric and for the logarithmic means, the next identity
holds:

I(a, b)b−a = I(a,G(a, b))G(a,b)−a · I(G(a, b), b)b−G(a,b). (6)

Proof. From a <
√

ab < b and (1) we obtain

ln I(a, b) =
1

b− a

∫ b

a

lnxdx =
1

b− a

∫ √
ab

a

lnxdx +
1

b− a

∫ b

√
ab

lnxdx,

ln I(a, b) =
1

b− a
·
√

ab− a√
ab− a

∫ √
ab

a

lnxdx +
1

b− a
· b−

√
ab

b−
√

ab

∫ b

√
ab

lnxdx,

so

ln I(a, b) =

√
ab− a

b− a
· ln I(a,

√
ab) +

b−
√

ab

b− a
· ln I(

√
ab, b).

This implies

(b− a) ln I(a, b) = (
√

ab− a) ln I(a,
√

ab) + (b−
√

ab) ln I(b−
√

ab).
Finally this leads to

I(a, b)b−a = I(a,
√

ab)
√

ab−a · I(
√

ab, b)b−
√

ab �

The following theorem gives a relation between the geometrical, arithmetical
and the identric mean of two positive numbers.

Theorem 2.2. Consider the positive numbers a, b such that 0 < a < b. Then with the
notations mentioned above, we have that the next identity holds:

I(a, b) = G (I(a,A(a, b)), I(A(a, b), b)) . (7)

Proof. From a < a+b
2 < b and (1) we obtain

1
b− a

∫ b

a

lnxdx =
a+b
2 − a

b− a
· 1

a+b
2 − a

∫ a+b
2

a

lnxdx +
b− a+b

2

b− a
· 1
b− a+b

2

∫ b

a+b
2

lnxdx,

so we have

(b− a) ln I(a, b) =
(

a + b

2
− a

)
ln I

(
a,

a + b

2

)
+
(

b− a + b

2

)
ln I

(
a + b

2
, b

)
,

which implies

I (a, b)b−a = I

(
a,

a + b

2

) b−a
2

· I
(

a + b

2
, b

) b−a
2

.
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Finally this is equivalent to:

I(a, b)2 = I

(
a,

a + b

2

)
· I
(

a + b

2
, b

)
.

By applying the square root in the last expression, we get (7) �
From this Theorem, we obtain some nice results for some certain values of a and b.

Proposition 2.1. If b = a + 2 we have that:

I(a, a + 2)2 = I(a, a + 1) · I(a + 1, a + 2) (a > 0)

Proposition 2.2. If b = a + 1 we have

I(a, a + 1)2 = I(a, a +
1
2
) · I(a +

1
2
, a + 1) (a > 0)

Proposition 2.3. If b = (2n− 1)a we have that:

I(a, (2n− 1)a)2 = I(a, na) · I(na, (2n− 1)a) (a > 0)

As a final application we can give the next result.

Proposition 2.4. Consider that b = a + 2n. Denote by Ii(a) = I(a + i− 1, a + i). Then
the next identity holds:

I(a, a + 2n)2
n

=
∏

1≤i≤2n

Ii(a)

The proof follows easily by the induction and it is let to the reader as an exercise.
The following theorem gives a relation between the logarithmic, harmonic and the
arithmetical mean of two positive numbers.

Theorem 2.3. Considering the positive numbers a, b such that 0 < a < b, the next
identity holds:

L(a, b) = H−1 (L(a,A(a, b)), L(A(a, b), b)) . (8)
We mention that we have considered that

H−1(a, b) =
1

H(a, b)
.

Proof. From a < a+b
2 < b and (1) we obtain

1
b− a

∫ b

a

1
x

dx =
a+b
2 − a

b− a
· 1

a+b
2 − a

∫ a+b
2

a

1
x

dx +
b− a+b

2

b− a
· 1
b− a+b

2

∫ b

a+b
2

1
x

dx,

This means that
1

L(a, b)
=

1
2
· 1
L(a, a+b

2 )
+

1
2
· 1
L(a+b

2 , b)
.

From here follows clearly that

L(a, b) = H−1 (L(a,A(a, b)), L(A(a, b), b)) .

�

The following theorem gives a relation between the geometrical, harmonic and
the arithmetical mean of two positive numbers.
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Theorem 2.4. Consider the positive numbers a, b such that 0 < a < b. Then the next
identity holds:

G2(a, b) = H−1
(
G2(a,A(a, b)), G2(A(a, b), b)

)
. (9)

The notations are the ones of the previous theorem.

Proof. From a < a+b
2 < b and (4) we obtain

1
b− a

∫ b

a

1
x2

dx =
a+b
2 − a

b− a
· 1

a+b
2 − a

∫ a+b
2

a

1
x2

dx +
b− a+b

2

b− a
· 1
b− a+b

2

∫ b

a+b
2

1
x2

dx,

This means that
1

G2(a, b)
=

1
2
· 1
G2(a, a+b

2 )
+

1
2
· 1
G2(a+b

2 , b)
.

From here follows clearly that

G2(a, b) = H−1
(
G2(a,A(a, b)), G2(A(a, b), b)

)
.

�

The following theorem gives a kind of iteration for the power mean of a, b and
power t > 0.

Theorem 2.5. Consider the positive numbers a, b such that 0 < a < b. Then the next
identity holds:

At(a, b) = At (At(a,At(a, b)), At(At(a, b), b)) . (10)

Remark 2.1. For t = 1 we get A1(a, b) = A(a, b). For t = 2 we get A2(a, b) =(
a2+b2

2

) 1
2

which is named the quadratic mean, another well known mean. It is well
known that for fixed positive numbers a, b and real t, the function t 7−→ At(a, b) is
increasing, with equality if an only if a = b ( see [1] or [2]).

Proof. Because a < At(a, b) < b and the relation (5), we obtain:

[At(a, b)]t =
t

bt − at

∫ b

a

x2t−1dx

=
[At(a, b)]t − at

bt − at
· t

[At(a, b)]t − at

∫ At(a,b)

a

x2t−1dx+

+
bt − [At(a, b)]t

bt − at
· t

bt − [At(a, b)]t

∫ b

At(a,b)

x2t−1dx.

But this gives that

[At(a, b)]t =
1
2
·
[
At(a,At(a, b))t + At(At(a, b), b)t

]
.

By the definition of At(a, b) if follows easily that

At(a, b) = At

(
At(a,At(a, b)), At(A(a, b), b)

)
. �

This ends the proof.
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