Some interpolation schemes with triangular and rectangular nodes of Birkhoff type

Marius M. Birou

ABSTRACT. If $P_{i}, i=\overline{1, r}$ and $Q_{j}, j=\overline{1, r}$ are univariate Lagrange interpolation projectors so that the parametric extensions are bivariate projectors which form the chains, i.e.

$$
P_{1}^{\prime} \leq P_{2}^{\prime} \leq \ldots \leq P_{r}^{\prime}, Q_{1}^{\prime \prime} \leq Q_{2}^{\prime \prime} \leq \ldots \leq Q_{r}^{\prime \prime}
$$

the bivariate Biermann interpolation projector is given by

$$
B_{r}=P_{1}^{\prime} Q_{r}^{\prime \prime} \oplus \ldots \oplus P_{r}^{\prime} Q_{1}^{\prime \prime}
$$

(see [8]).
In [3], using chains of bivariate Birkhoff projectors which are parametric extensions of some univariate Birkhoff interpolation projectors, we defined the bivariate Biermann interpolation projector of Birkhoff type. In this article, we give some properties of this projector. The bivariate Biermann interpolation projectors of Birkhoff type with triangular and rectangular nodes are presented. We give representations of these projectors by cardinal functions and we determine the approximation orders. Some numerical examples are given.

1. Introduction

In this article we construct interpolation schemes using boolean methods and parametric extensions of univariate Birkhoff interpolation projectors. Boolean methods in multivariate approximation were introduced by Gordon W.J. in 1969 in [9]. These results were extended by Delvos F.J., Posdorf H., Schempp W. [6], [7], [8].

Let X, Y be the linear spaces on \mathbb{R}.
The linear operator P defined on space X is called projector if $P^{2}=P$. The operator $P^{C}=I-P$, where I is identity operator, is called the remainder projector of P.

The range space of projector P is

$$
\mathcal{R}(P)=\{P f \mid f \in X\}
$$

The set of interpolation points of projector P is denoted by $\mathcal{P}(P)$.
Proposition 1.1. If P, Q are commutative projectors then we have

$$
\begin{align*}
& \mathcal{R}(P \oplus Q)=\mathcal{R}(P)+\mathcal{R}(Q) \\
& \mathcal{P}(P \oplus Q)=\mathcal{P}(P) \cup \mathcal{P}(Q) \tag{1.1}
\end{align*}
$$

[^0]If P_{1}, P_{2} are projectors on space X, we define relation " \leq ":

$$
\begin{equation*}
P_{1} \leq P_{2} \Leftrightarrow P_{1} P_{2}=P_{1} \tag{1.2}
\end{equation*}
$$

We have the following result from [8].
Proposition 1.2. Let $r \in \mathbb{N}, P_{1}, \ldots, P_{r}$ univariate interpolation projectors on $C(X)$ and Q_{1}, \ldots, Q_{r} univariate interpolation projectors on $C(Y)$. Let $P_{1}^{\prime}, \ldots, P_{r}^{\prime}, Q_{1}^{\prime \prime}, \ldots, Q_{r}^{\prime \prime}$ be the corresponding parametric extension. We assume that

$$
\begin{equation*}
P_{1} \leq P_{2} \leq \cdots \leq P_{r}, \quad Q_{1} \leq Q_{2} \leq \cdots \leq Q_{r} \tag{1.3}
\end{equation*}
$$

We have that

$$
\begin{equation*}
B_{r}=P_{1}^{\prime} Q_{r}^{\prime \prime} \oplus P_{2}^{\prime} Q_{r-1}^{\prime \prime} \oplus \cdots \oplus P_{r}^{\prime} Q_{1}^{\prime \prime} \tag{1.4}
\end{equation*}
$$

is projector and it has representation

$$
\begin{equation*}
B_{r}=\sum_{m=1}^{r} P_{m}^{\prime} Q_{r+1-m}^{\prime \prime}-\sum_{m=1}^{r-1} P_{m}^{\prime} Q_{r-m}^{\prime \prime} \tag{1.5}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
B_{r}^{C}=P_{r}^{\prime C}+P_{r-1}^{\prime C} Q_{1}^{\prime \prime C}+\cdots+P_{1}^{\prime C} Q_{r-1}^{\prime \prime C}+Q_{r}^{\prime \prime C}-\left(P_{r}^{\prime C} Q_{1}^{\prime \prime C}+\cdots+P_{1}^{\prime C} Q_{r}^{\prime \prime C}\right) \tag{1.6}
\end{equation*}
$$

where $P^{C}=I-P, I$ is identity operator.
Let be $x_{k} \in[a, b], r_{k} \in \mathbb{N}, N_{k} \subset\left\{0,1, \ldots, r_{k}\right\}, k=\overline{1, m}$ and $n=\left|N_{1}\right|+\left|N_{2}\right|+$ $\ldots+\left|N_{m}\right|-1$.

The univariate Birkhoff interpolation operator is an operator $B: X \rightarrow \mathbb{P}_{n}$ which interpolates some derivative (not necessary consecutive) of function $f \in X$ on the set of nodes, i.e.

$$
(B f)^{(j)}\left(x_{k}\right)=f^{(j)}\left(x_{k}\right), \quad k=\overline{1, m}, \quad j \in N_{k}
$$

Remark 1.1. The problem of univariate Birkhoff interpolation has unique solution if corresponding determinant is nonzero.

Particular cases of Birkhoff operator

- a Birkhoff operator $B: X \rightarrow \mathbb{P}_{n}$ which interpolates some consecutive derivative of function $f \in X$ up to some given orders on the set of nodes, i.e.

$$
(B f)^{(j)}\left(x_{k}\right)=f^{(j)}\left(x_{k}\right), \quad k=\overline{1, m}, \quad j=\overline{0, r_{k}}
$$

is called Hermite interpolation operator

- a Birkhoff operator $B: X \rightarrow \mathbb{P}_{n}$ which interpolates the function $f \in X$ on the set of nodes, i.e.

$$
(B f)\left(x_{k}\right)=f\left(x_{k}\right), \quad k=\overline{1, m}
$$

is called Lagrange interpolation operator.
In Section 2 we present the Biermann interpolation projector of Birkhoff type from [3]. We prove some properties of this projector in Section 3. In Sections 4 and 5 we develop Biermann operators of Birkhoff type with triangular and respective rectangular elements. These interpolation schemes are useful tools in finite element method.

2. Preliminaries

Let be the univariate Birkhoff interpolation projectors

$$
P_{1}, \ldots, P_{r}, Q_{1}, \ldots, Q_{r}
$$

given by

$$
\begin{array}{ll}
\left(P_{m} f_{1}\right)(x)= & \sum_{i=1}^{k_{m}} \sum_{p \in I_{i m}} b_{i p}^{m}(x) f_{1}^{(p)}\left(x_{i}\right), \\
1 \leq m \leq r \tag{2.7}\\
\left(Q_{n} f_{2}\right)(y)=\sum_{j=1}^{l_{n}} \sum_{q \in J_{j n}} \widetilde{b}_{j q}^{n}(y) f_{2}^{(q)}\left(y_{j}\right), & 1 \leq n \leq r
\end{array}
$$

where $f_{1}:[a, b] \rightarrow \mathbb{R}$ is a function for which there are $f_{1}^{(p)}\left(x_{i}\right), i=\overline{1, k_{m}}, p \in I_{i m}$, $m=\overline{1, r}$ and $f_{2}:[c, d] \rightarrow \mathbb{R}$ is a function for which there are $f_{2}^{(q)}\left(y_{j}\right), j=\overline{1, l_{n}}$, $q \in J_{j n}, n=\overline{1, r}$.

Assume that

$$
\begin{aligned}
\left\{x_{1}, \ldots, x_{k_{m}}\right\} & \subseteq[a, b], & & 1 \leq m \leq r \\
\left\{y_{1}, \ldots, y_{l_{n}}\right\} & \subseteq[c, d], & & 1 \leq n \leq r
\end{aligned}
$$

with

$$
\begin{align*}
& 1 \leq k_{1} \leq k_{2} \leq \cdots \leq k_{r} \tag{2.8}\\
& 1 \leq l_{1} \leq l_{2} \leq \cdots \leq l_{r}
\end{align*}
$$

and

$$
\begin{array}{ll}
I_{i m} \subseteq I_{i, m+1}, & i=\overline{1, k_{m}}, m=\overline{1, r-1} \\
J_{j n} \subseteq J_{j, n+1}, & j=\overline{1, l_{n}}, n=\overline{1, r-1} . \tag{2.9}
\end{array}
$$

The cardinal functions $b_{i p}^{m}, m=\overline{1, r}$ and $\widetilde{b}_{j q}^{n}, n=\overline{1, r}$ satisfy the conditions

$$
\left\{\begin{array}{l}
b_{i p}^{m(j)}\left(x_{\nu}\right)=0, \nu \neq i, j \in I_{\nu m} \tag{2.10}\\
b_{i p}^{m(j)}\left(x_{i}\right)=\delta_{j p}, j \in I_{i m}
\end{array}\right.
$$

for $p \in I_{i m}, \nu, i=\overline{1, k_{m}}$ and respective

$$
\left\{\begin{array}{l}
b_{j q}^{n(i)}\left(y_{\nu}\right)=0, \nu \neq j, i \in J_{\nu n} \tag{2.11}\\
b_{j q}^{n(i)}\left(y_{j}\right)=\delta_{j q}, i \in J_{j n}
\end{array}\right.
$$

for $q \in J_{j n}, \nu, j=\overline{1, l_{n}}$.
If $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$, than the parametric extensions are given by

$$
\begin{aligned}
& \left(P_{m}^{\prime} f\right)(x, y)=\sum_{i=1}^{k_{m}} \sum_{p \in I_{i m}} b_{i p}^{m}(x) f^{(p, 0)}\left(x_{i}, y\right), \quad 1 \leq m \leq r \\
& \left(Q_{n}^{\prime \prime} f\right)(x, y)=\sum_{j=1}^{l_{n}} \sum_{q \in J_{j n}} \widetilde{b}_{j q}^{n}(y) f^{(0, q)}\left(x, y_{j}\right), \quad 1 \leq n \leq r
\end{aligned}
$$

Theorem 2.1. The parametric extensions

$$
P_{1}^{\prime}, \ldots, P_{r}^{\prime}, Q_{1}^{\prime \prime}, \ldots, Q_{r}^{\prime \prime}
$$

are bivariate interpolations projectors which form the chains i.e.

$$
P_{1}^{\prime} \leq \cdots \leq P_{r}^{\prime}, \quad Q_{1}^{\prime \prime} \leq \cdots \leq Q_{r}^{\prime \prime}
$$

The proof of this theorem results using conditions (2.8) and (2.9). The projectors $P_{m}^{\prime}, Q_{n}^{\prime \prime}$ are commutative

$$
P_{m}^{\prime} Q_{n}^{\prime \prime}=P_{m}^{\prime} Q_{n}^{\prime \prime}, \quad 1 \leq m, n \leq r .
$$

The tensor product projector $P_{m}^{\prime} Q_{n}^{\prime \prime}$ has the representation

$$
\left(P_{m}^{\prime} Q_{n}^{\prime \prime} f\right)(x, y)=\sum_{i=1}^{k_{m}} \sum_{p \in I_{i m}} \sum_{j=1}^{l_{n}} \sum_{q \in J_{j n}} b_{i p}^{m}(x) \widetilde{b}_{j q}^{n}(y) f^{(p, q)}\left(x_{i}, y_{j}\right)
$$

and interpolation properties

$$
\begin{gathered}
\quad\left(P_{m}^{\prime} Q_{n}^{\prime \prime} f\right)^{(p, q)}\left(x_{i}, y_{j}\right)=f^{(p, q)}\left(x_{i}, y_{j}\right) \\
1 \leq i \leq k_{m}, \quad 1 \leq j \leq l_{n}, \quad p \in I_{i m}, \quad q \in J_{j n}
\end{gathered}
$$

The projectors $P_{1}^{\prime}, \ldots, P_{r}^{\prime}, Q_{1}^{\prime \prime}, \ldots, Q_{r}^{\prime \prime}$ generate a distributive lattice on $C([a, b] \times$ $[c, d]$). A special element of this lattice is

$$
\begin{equation*}
B_{r}^{B}=P_{1}^{\prime} Q_{r}^{\prime \prime} \oplus \cdots \oplus P_{r}^{\prime} Q_{1}^{\prime \prime}, \quad r \in \mathbb{N} \tag{2.12}
\end{equation*}
$$

which is called Biermann interpolation projector of Birkhoff type.
Remark 2.2. If instead of Birkhoff projectors we use Lagrange univariate projectors, i.e.

$$
\begin{aligned}
I_{i m} & =\{0\}, i=\overline{1, k_{m}}, m=\overline{1, r} \\
J_{j n} & =\{0\}, j=\overline{1, l_{n}}, n=\overline{1, r}
\end{aligned}
$$

we obtain Biermann interpolation projector, studied by Delvos F., Posdorf H. [6], [7].
Remark 2.3. The classical Biermann interpolation projector with triangular nodes was given the first by Stancu D.D. in [13]. Triangular grids were used the first by Biermann O.[1] in 1903, but in context cubature.

Remark 2.4. If instead of Birkhoff projectors we use Hermite univariate projectors, i.e.

$$
\begin{aligned}
& I_{i m}=\left\{0,1, \ldots, u_{i m}\right\}, i=\overline{1, k_{m}}, m=\overline{\overline{1, r}} \\
& J_{j n}=\left\{0,1, \ldots, v_{j n}\right\}, j=\overline{1, l_{n}}, n=\overline{1, r}
\end{aligned}
$$

we obtain Biermann interpolation projector of Hermite type [2] , [4].
Remark 2.5. In [3] we studied two particular cases of Biermann interpolation projector of Birkhoff type

- Biermann interpolation projector of Abel-Gonciarov type

$$
\begin{aligned}
& k_{m}=m, I_{j i}=\{j-1\}, j=\overline{1, r}, i=\overline{j, r} \\
& l_{n}=n, J_{i j}=\{i-1\}, i=\overline{1, r}, j=\overline{i, r}
\end{aligned}
$$

- Biermann interpolation projector of Lidstone type

$$
\begin{aligned}
& k_{m}=2, I_{1 i}=I_{2 i}=\{0,2, \ldots, 2 i-2\} \\
& l_{n}=2, J_{1 j}=J_{2 j}=\{0,2, \ldots, 2 j-2\}
\end{aligned}
$$

3. Properties of Biermann interpolation projector of Birkhoff type

$$
\text { Let } \alpha_{i}=\left|I_{1 i}\right|+\cdots+\left|I_{k_{i}, i}\right|, \beta_{i}=\left|J_{1 i}\right|+\cdots+\left|J_{l_{i}, i}\right|, 1 \leq i \leq r .
$$

Proposition 3.3. The range space of projector B_{r}^{B} is given by

$$
\begin{equation*}
\mathcal{R}\left(B_{r}^{B}\right)=\Pi_{\alpha_{1}-1} \otimes \Pi_{\beta_{r}-1}+\cdots+\Pi_{\alpha_{r}-1} \otimes \Pi_{\beta_{1}-1} . \tag{3.13}
\end{equation*}
$$

Proof. Taking into account Proposition 1.1 we have

$$
\mathcal{R}\left(B_{r}^{B}\right)=\mathcal{R}\left(P_{1}^{\prime} Q_{r}^{\prime \prime}\right)+\cdots+\mathcal{R}\left(P_{r}^{\prime} Q_{1}^{\prime \prime}\right) .
$$

As

$$
\begin{array}{cl}
\mathcal{R}\left(P_{m}\right)=\Pi_{\alpha_{m}-1}, & 1 \leq m \leq r \\
\mathcal{R}\left(Q_{n}\right)=\Pi_{\beta_{n}-1}, & 1 \leq n \leq r
\end{array}
$$

it follows (3.13).
Proposition 3.4. The projector B_{r}^{B} satisfy interpolation properties

$$
\begin{gather*}
\left(B_{r}^{B} f\right)^{(p, q)}\left(x_{i}, y_{j}\right)=f^{(p, q)}\left(x_{i}, y_{j}\right) \tag{3.14}\\
1 \leq i \leq k_{m}, \quad 1 \leq j \leq l_{r+1-m}, \quad 1 \leq m \leq r \\
p \in I_{i m} \backslash I_{i, m-1}, \quad q \in J_{r+1-m}
\end{gather*}
$$

where $I_{i, m-1}=\emptyset, k_{m-1}<i \leq k_{m}, 1 \leq m \leq r$ and $k_{0}=0$.
Proof. From Proposition 1.1 it follows that

$$
\mathcal{P}\left(B_{r}^{B}\right)=\mathcal{P}\left(P_{1}^{\prime} Q_{r}^{\prime \prime}\right) \oplus \cdots \oplus \mathcal{P}\left(P_{r}^{\prime} Q_{1}^{\prime \prime}\right)
$$

We denote

$$
\mathcal{I}(P)=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid(P f)^{(p, q)}\left(x_{i}, y_{j}\right)=f^{(p, q)}\left(x_{i}, y_{j}\right)\right\}
$$

Then we have

$$
\mathcal{I}\left(B_{r}\right)=\mathcal{I}\left(P_{1}^{\prime} Q_{r}^{\prime \prime}\right) \cup \cdots \cup \mathcal{I}\left(P_{r}^{\prime} Q_{1}^{\prime \prime}\right)
$$

Next we determine the sets $\mathcal{I}\left(P_{m}^{\prime} Q_{r+1-m}^{\prime \prime}\right), 1 \leq m \leq r$.
We have

$$
\begin{aligned}
& \mathcal{I}\left(P_{1}^{\prime} Q_{r}^{\prime \prime}\right)=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{1}}, j=\overline{1, l_{r}}, p \in I_{i 1}, q \in J_{j r}\right\} \\
& \quad=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{1}}, j=\overline{1, l_{r}}, p \in I_{i 1} \backslash I_{i 0}, \quad q \in J_{j r}\right\}
\end{aligned}
$$

where $I_{i 0}=\emptyset, i=\overline{1, k_{1}}$
For $m=\overline{2, r}$ we have

$$
\begin{aligned}
& \mathcal{I}\left(P_{m}^{\prime} Q_{r+1-m}^{\prime \prime}\right)=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{m}}, j=\overline{1, l_{r+1-m}}, p \in I_{i m}, q \in J_{j, r+1-m}\right\} \\
& \quad=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{m-1}}, j=\overline{1, l_{r+1-m}}, p \in I_{i, m-1}, q \in J_{j, r+1-m}\right\} \\
& \cup\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{m-1}}, j=\overline{1, l_{r+1-m}}, p \in I_{i m} \backslash I_{i, m-1}, q \in J_{j, r+1-m}\right\} \\
& \cup\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{k_{m-1}, k_{m}}, j=\overline{1, l_{r+1-m}}, p \in I_{i m}, q \in J_{j, r+1-m}\right\} \\
& \quad=\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{m-1}}, j=\overline{1, l_{r+1-m}}, p \in I_{i, m-1}, q \in J_{j, r+1-m}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\cup\left\{f^{(p, q)}\left(x_{i}, y_{j}\right) \mid i=\overline{1, k_{m}}, j=\overline{1, l_{r+1-m}}, p \in I_{i m} \backslash I_{i, m-1}, q \in J_{j, r+1-m}\right\} \\
\stackrel{\text { not }}{=} A_{m} \cup C_{m}
\end{gathered}
$$

where $I_{i, m-1}=\emptyset, i=\overline{k_{m-1}+1, k_{m}}$.
As $A_{m} \subseteq \mathcal{I}\left(P_{m-1}^{\prime} Q_{r+2-m}\right), m=\overline{2, r}$ it follows that

$$
\mathcal{I}\left(B_{r}\right)=C_{1} \cup C_{2} \cup \cdots \cup C_{r}
$$

and the sets $C_{j}, j=\overline{1, r}$ are disjoints. So, relation (3.14) holds.
Taking into account (1.5) we have

$$
\begin{align*}
\left(B_{r}^{B} f\right)(x, y) & =\sum_{m=1}^{r} \sum_{i=1}^{k_{m}} \sum_{p \in I_{i m}} \sum_{j=1}^{l_{r+1-m}} \sum_{q \in J_{j, r+1-m}} b_{i p}^{m}(x) \widetilde{b}_{j q}^{r+1-m}(y) f^{(p, q)}\left(x_{i}, y_{j}\right) \tag{3.15}\\
& -\sum_{m=1}^{r-1} \sum_{i=1}^{k_{m}} \sum_{p \in I_{i m}} \sum_{j=1}^{l_{r-m}} \sum_{q \in J_{j, r-m}} b_{i p}^{m}(x) \widetilde{b}_{j q}^{r-m}(y) f^{(p, q)}\left(x_{i}, y_{j}\right)
\end{align*}
$$

From Proposition 3.4 we have the following representation of the projector B_{r}^{B} by cardinal functions

$$
\begin{equation*}
B_{r}^{B} f=\sum_{m=1}^{r} \sum_{i=1}^{k_{m}} \sum_{p \in I_{i m} \backslash I_{i, m-1}} \sum_{j=1}^{l_{r+1-m}} \sum_{q \in J_{j, r+1-m}} \Phi_{i j}^{p q} f^{(p, q)}\left(x_{i}, y_{j}\right) \tag{3.16}
\end{equation*}
$$

Proposition 3.5. The cardinal functions $\Phi_{i j}$ are given by formulas

$$
\begin{gather*}
\Phi_{i j}^{p q}(x, y)=\sum_{s \in A_{i j}^{p q}} b_{i p}^{s}(x) \widetilde{b}_{j q}^{r+1-s}(y)-\sum_{s \in B_{i j}^{p q}} b_{i p}^{s}(x) \widetilde{b}_{j q}^{r-s}(y) \tag{3.17}\\
1 \leq i \leq k_{m}, 1 \leq j \leq l_{r+1-m}, 1 \leq m \leq r \\
p \in I_{i m} \backslash I_{i, m-1}, q \in J_{j, r+1-m}
\end{gather*}
$$

where

$$
\begin{gathered}
A_{i j}^{p q}=\left\{s \in\{1, \ldots, r\} \mid i \in X_{s}, p \in I_{i s}, j \in Y_{r+1-s}, q \in J_{j, r+1-s}\right\} \\
B_{i j}^{p q}=\left\{s \in\{1, \ldots, r-1\} \mid i \in X_{s}, p \in I_{i s}, j \in Y_{r-s}, q \in J_{j, r-s}\right\} \\
X_{s}=\left\{1, \ldots, k_{s}\right\}, \quad Y_{s}=\left\{1, \ldots, l_{s}\right\}, \quad 1 \leq s \leq r .
\end{gathered}
$$

Proof. For the function

$$
f(x, y)=b_{i p}^{r}(x) \widetilde{b}_{j q}^{r}(y)
$$

we have

$$
B_{r} f=\Phi_{i j}^{p q}
$$

Taking into account relation (1.5) it follows that

$$
\begin{aligned}
& \Phi_{i j}^{p q}=\sum_{s=1}^{r} P_{s}^{\prime}\left(b_{i p}^{r}\right) \otimes Q_{r+1-s}^{\prime \prime}\left(\widetilde{b}_{j q}^{r}\right)-\sum_{s=1}^{r-1} P_{s}^{\prime}\left(b_{i p}^{r}\right) \otimes Q_{r-s}^{\prime \prime}\left(\widetilde{b}_{j q}^{r}\right) \\
& =\sum_{\substack{s \in\{1, \ldots, r\} \\
i \in X_{s}, p \in I_{i s}}} b_{i p}^{s} \otimes Q_{r+1-s}^{\prime \prime}\left(\widetilde{b}_{j q}^{r}\right)-\sum_{\substack{s \in\{1, \ldots, r-1\} \\
i \in X_{s}, p \in I_{i s}}} b_{i p}^{s} \otimes Q_{r-s}^{\prime \prime}\left(\widetilde{b}_{j q}^{r}\right)
\end{aligned}
$$

$$
=\sum_{\substack{s \in\{1, \ldots, r\} \\ i \in X_{s}, p \in I_{i s} \\ j \in Y_{r+1}-s, q \in J_{j, r+1-s}}} b_{i p}^{s} \otimes \widetilde{b}_{j q}^{r+1-s}-\sum_{\substack{s \in\{1, \ldots, r-1\} \\ i \in X_{s}, p \in I_{i s} \\ j \in Y_{r-s}, q \in J_{j, r-s}}} b_{i p}^{s} \otimes \widetilde{b}_{j q}^{r-s} .
$$

Proposition 3.6. If $f \in C^{\alpha_{r}, \beta_{r}}([a, b] \times[c, d])$ we can give the following representation for the remainder term in Biermann interpolation of Birkhoff type.

$$
\begin{gather*}
f(x, y)-\left(B_{r}^{B} f\right)(x, y) \tag{3.18}\\
=\int_{a}^{b} \varphi_{\alpha_{r}}(x, s) f^{\left(\alpha_{r}, 0\right)}(s, y) d s+\int_{c}^{d} \psi_{\beta_{r}}(y, t) f^{\left(0, \beta_{r}\right)}(x, t) d t \\
+\sum_{m=1}^{r-1} \int_{a}^{b} \int_{c}^{d} \varphi_{\alpha_{r-m}}(x, s) \psi_{\beta_{m}}(y, t) f^{\left(\alpha_{r-m}, \beta_{m}\right)}(s, t) d s d t \\
-\sum_{m=1}^{r} \int_{a}^{b} \int_{c}^{d} \varphi_{\alpha_{r+1-m}}(x, s) \psi_{\beta_{m}}(y, t) f^{\left(\alpha_{r+1-m}, \beta_{m}\right)}(s, t) d s d t
\end{gather*}
$$

where the kernel functions are given by relations

$$
\begin{aligned}
\varphi_{\alpha_{m}}(x, s)=P_{m}^{c}\left[\frac{(x-s)_{+}^{\alpha_{m}-1}}{\alpha_{m}!}\right], & 1 \leq m \leq r \\
\psi_{\beta_{n}}(y, t)=Q_{n}^{c}\left[\frac{(y-t)_{+}^{\beta_{n}-1}}{\beta_{n}!}\right], & 1 \leq n \leq r
\end{aligned}
$$

($z_{+}=0$, if $z<0$ and $z_{+}=z$ if $\left.z \geq 0\right)$.
Proof. If $f_{1} \in C^{\alpha_{m}}[a, b]$ şi $f_{2} \in C^{\beta_{n}}[c, d]$ then

$$
\begin{gathered}
\left(P_{m}^{c} f_{1}\right)(x)=f_{1}(x)-\left(P_{m} f_{1}\right)(x)=\int_{a}^{b} \varphi_{\alpha_{m}}(x, s) f_{1}^{\left(\alpha_{m}\right)}(s) d s, \quad 1 \leq m \leq r \\
\left(Q_{n}^{c} f_{2}\right)(y)=f_{2}(y)-\left(Q_{n} f_{2}\right)(y)=\int_{c}^{d} \varphi_{\beta_{n}}(y, t) f_{2}^{\left(\beta_{n}\right)}(t) d t, \quad 1 \leq n \leq r
\end{gathered}
$$

Using formula (1.6) we get (3.18).
Proposition 3.7. We assume that $|a|,|b|,|c|,|d| \leq 1$ and $I_{k} \subset\{0,1\}$. Let $h=b-a=$ $d-c$ and $q=\min \left\{\alpha_{r-m}+\beta_{m}, 0 \leq m \leq r\right\}$ with $\alpha_{0}=0, \beta_{0}=0$. Than we have

$$
\begin{equation*}
f(x, y)-\left(B_{r}^{B} f\right)(x, y)=O\left(h^{q}\right), \quad h \rightarrow 0 . \tag{3.19}
\end{equation*}
$$

Proof. Taking into account

$$
\begin{aligned}
f_{1}(x)-\left(P_{m} f_{1}\right)(x)=O\left(h^{\alpha_{m}}\right), & 1 \leq m \leq r \\
f_{2}(y)-\left(Q_{n} f_{2}\right)(y)=O\left(h^{\beta_{n}}\right), & 1 \leq n \leq r
\end{aligned}
$$

and using formula (1.6) we get (3.19).

4. TRIANGULAR ELEMENTS

Let be the interpolation nodes

$$
x_{i}=\frac{(i-1) h}{(r-1)}, \quad y_{j}=\frac{(j-1) h}{(r-1)}, \quad 1 \leq i, j \leq r, \quad h>0
$$

and

$$
\begin{gathered}
k_{m}=m, l_{n}=n, 1 \leq m, n \leq r \\
I_{1 m}=\{0\}, 1 \leq m \leq r \\
I_{i m}=\{1\}, 2 \leq i \leq m, 2 \leq m \leq r \\
J_{1 n}=\{0\}, 1 \leq n \leq r \\
J_{j n}=\{1\}, 2 \leq j \leq n, 2 \leq n \leq r
\end{gathered}
$$

Let be the univariate Birkhoff interpolation projectors

$$
\begin{array}{ll}
\left(P_{m} f_{1}\right)(x)=\sum_{i=1}^{m} \sum_{p \in I_{i m}} b_{i p}^{m}(x) f_{1}^{(p)}\left(x_{i}\right), & 1 \leq m \leq r \\
\left(Q_{n} f_{2}\right)(y)=\sum_{j=1}^{n} \sum_{q \in J_{j n}} \widetilde{b}_{j q}^{n}(y) f_{2}^{(q)}\left(y_{j}\right), & 1 \leq n \leq r
\end{array}
$$

where the functions $b_{i p}^{m}$ and $\widetilde{b}_{j q}^{n}$ are obtained from conditions (2.10) and respective (2.11).

As the conditions (2.8) and (2.9) are satisfied, it follows that the parametric extensions are projectors which form the chains

$$
P_{1}^{\prime} \leq \ldots \leq P_{r}^{\prime}, \quad Q_{1}^{\prime \prime} \leq \ldots \leq Q_{r}^{\prime \prime}
$$

The Biermann interpolation operator of Birkhoff type is defined by

$$
B_{r}^{B}=P_{1}^{\prime} Q_{r}^{\prime \prime} \oplus \ldots \oplus P_{r}^{\prime} Q_{1}^{\prime \prime}
$$

The projector B_{r}^{B} has the following interpolation properties

$$
\begin{gathered}
\left(B_{r}^{B} f\right)\left(x_{1}, y_{1}\right)=f\left(x_{1}, y_{1}\right) \\
\left(B_{r}^{B} f\right)^{(1,0)}\left(x_{i}, y_{1}\right)=f^{(1,0)}\left(x_{i}, y_{1}\right), \quad 2 \leq i \leq r \\
\left(B_{r}^{B} f\right)^{(0,1)}\left(x_{1}, y_{j}\right)=f^{(0,1)}\left(x_{1}, y_{j}\right), \quad 2 \leq j \leq r \\
\left(B_{r}^{B} f\right)^{(1,1)}\left(x_{i}, y_{j}\right)=f^{(1,1)}\left(x_{i}, y_{j}\right), \quad 2 \leq i \leq r, \quad 2 \leq j \leq r+1-i
\end{gathered}
$$

The range space of the projector B_{r}^{B} is

$$
\mathcal{R}\left(B_{r}^{B}\right)=\Pi_{0} \otimes \Pi_{r-1}+\Pi_{1} \otimes \Pi_{r-2}+\ldots+\Pi_{r-1} \otimes \Pi_{0}
$$

We have the following representation of projector B_{r}^{B} by cardinal functions

$$
\begin{equation*}
B_{r}^{B} f=\sum_{m=1}^{r} \sum_{j=1}^{r+1-m} \sum_{p \in I_{m, m}} \sum_{q \in J_{j, r+1-m}} \Phi_{m j}^{p q} f^{(p, q)}\left(x_{m}, y_{j}\right) \tag{4.20}
\end{equation*}
$$

where

$$
\Phi_{m j}^{p q}(x, y)=\sum_{s=m}^{r+1-j} b_{m p}^{s}(x) \widetilde{b}_{j q}^{r+1-s}(y)-\sum_{s=m}^{r-j} b_{m p}^{s}(x) \widetilde{b}_{j q}^{r-s}(y)
$$

Figure 1. Triangular elements $r=5$

$$
1 \leq m \leq r, \quad 1 \leq j \leq r+1-m, \quad p \in I_{m m}, \quad q \in J_{j, r+1-m}
$$

The approximation order is r, i.e.

$$
\begin{equation*}
f(x, y)-\left(B_{r}^{B} f\right)(x, y)=O\left(h^{r}\right), \quad h \rightarrow 0 \tag{4.21}
\end{equation*}
$$

We approximate the function $f: T_{1} \rightarrow \mathbb{R} f(x, y)=1 /\left(1+x^{2}+y^{2}\right)$ using Biermann interpolation of Birkhoff type. In tabel are given the estimations of error in max-norm.

r	$\left\|\left\|f-B_{r}^{B} f\right\|\right.$
2	0.16666666666667
3	0.24232025881303
4	0.03580421497499
5	0.02297335750323

5. RECTANGULAR ELEMENTS

Let be the interpolation nodes

$$
\begin{array}{lll}
x_{2 i-1}=-\frac{(1+2(r-i)) h}{2(2 r-1)}, & x_{2 i}=-x_{2 i-1}, & 1 \leq i \leq r \\
x_{2 j-1}=-\frac{(1+2(r-j)) h}{2(2 r-1)}, & x_{2 j}=-x_{2 j-1}, & 1 \leq j \leq r
\end{array}
$$

and

$$
\begin{aligned}
k_{m}= & 2 m, l_{n}=2 n, 1 \leq m, n \leq r \\
& I_{1 m}=\{0\}, 1 \leq m \leq r \\
I_{i m}= & \{1\}, 2 \leq i \leq 2 m, 1 \leq m \leq r \\
& J_{1 n}=\{0\}, 1 \leq n \leq r \\
J_{j n}= & \{1\}, 2 \leq j \leq 2 n, 1 \leq n \leq r .
\end{aligned}
$$

The univariate interpolation Birkhoff projectors are given by

$$
\begin{aligned}
\left(P_{m} f_{1}\right)(x) & =\sum_{i=1}^{2 m} \sum_{p \in I_{i m}} b_{i p}^{m}(x) f_{1}^{(p)}\left(x_{i}\right), \quad 1 \leq m \leq r \\
\left(Q_{n} f_{2}\right)(y) & =\sum_{j=1}^{2 n} \sum_{q \in J_{j n}} \widetilde{b}_{j q}^{n}(y) f_{2}^{(q)}\left(y_{j}\right), 1 \leq n \leq r
\end{aligned}
$$

where the cardinal functions $b_{i p}^{m}$ and $\widetilde{b}_{j q}^{n}$ are obtained by conditions (2.10) and respective (2.11).

As the conditions (2.8) and (2.9) are satisfied, it follows that the parametric extensions are bivariate projectors which form the chains

$$
P_{1}^{\prime} \leq \ldots \leq P_{r}^{\prime}, \quad Q_{1}^{\prime \prime} \leq \ldots \leq Q_{r}^{\prime \prime}
$$

The Biermann interpolation projector of Birkhoff type is given by

$$
B_{r}^{B}=P_{1}^{\prime} Q_{r}^{\prime \prime} \oplus \ldots \oplus P_{r}^{\prime} Q_{1}^{\prime \prime} .
$$

The projector B_{r}^{B} has the interpolation properties

$$
\begin{gathered}
\left(B_{r}^{B} f\right)\left(x_{1}, y_{1}\right)=f\left(x_{1}, y_{1}\right), \\
\left(B_{r}^{B} f\right)^{(1,0)}\left(x_{i}, y_{1}\right)=f^{(1,0)}\left(x_{i}, y_{1}\right), \quad 2 \leq i \leq 2 r, \\
\left(B_{r}^{B} f\right)^{(0,1)}\left(x_{1}, y_{j}\right)=f^{(0,1)}\left(x_{1}, y_{j}\right), \quad 2 \leq j \leq 2 r, \\
\quad\left(B_{r}^{B} f\right)^{(1,1)}\left(x_{i}, y_{j}\right)=f^{(1,1)}\left(x_{i}, y_{j}\right), \\
2 \leq i \leq 2 m, \quad 2 \leq j \leq 2(r+1-m), \quad 1 \leq m \leq r .
\end{gathered}
$$

Figure 2. Rectangular elements $r=3$
The range space of projector B_{r}^{B} is

$$
\mathcal{R}\left(B_{r}^{B}\right)=\Pi_{1} \otimes \Pi_{2 r-1}+\Pi_{3} \otimes \Pi_{2 r-3}+\ldots+\Pi_{2 r-1} \otimes \Pi_{1} .
$$

We have the following representations of the projector B_{r}^{B} by cardinal functions

$$
\begin{equation*}
B_{r}^{B} f=\sum_{m=1}^{r} \sum_{i=2 m-1}^{2 m} \sum_{j=1}^{2(r+1-m)} \sum_{p \in I_{i m}} \sum_{q \in J_{j, r+1-m}} \Phi_{i j}^{p q} f^{(p, q)}\left(x_{i}, y_{j}\right) \tag{5.22}
\end{equation*}
$$

where

$$
\begin{gathered}
\Phi_{i j}^{p q}(x, y)=\sum_{s=\left[\frac{i-1}{2}\right]+1}^{\left[r+1-\frac{j}{2}\right]} b_{i p}^{s}(x) \widetilde{b}_{j q}^{r+1-s}(y)-\sum_{s=\left[\frac{i-1}{2}\right]+1}^{\left[r-\frac{j}{2}\right]} b_{i p}^{s}(x) \widetilde{b}_{j q}^{r-s}(y) \\
1 \leq i \leq 2 m, \quad 1 \leq j \leq 2(r+1-m), 1 \leq m \leq r, \quad p \in I_{i m}, q \in J_{j, r+1-m}
\end{gathered}
$$

The approximation order is $2 r$, i.e.

$$
\begin{equation*}
f(x, y)-\left(B_{r}^{B} f\right)(x, y)=O\left(h^{2 r}\right), \quad h \rightarrow 0 \tag{5.23}
\end{equation*}
$$

We approximate the function $f:[-1 / 2,1 / 2] \times[-1 / 2,1 / 2] \rightarrow \mathbb{R}, \quad f(x, y)=$ $1 /\left(1+x^{2}+y^{2}\right)$ using Biermann interpolation of Birkhoff type. In table are given the estimations of error in max-norm.

r	$\\| f-B_{r}^{B} f$
2	0.69160966670624
3	0.04507288326815
4	0.02652021446710

REFERENCES

[1] Biermann O., Uber naherungeweise Cubaturen, Monatshefte fur Mathematik und Physik, 14(1983), 211-225
[2] Birou M., Biermann interpolation with Hermite information, Studia Univ. Babeş Bolyai, 51(2005), no. 3, 41-55
[3] Birou M., Biermann interpolation of Birkhoff type, Rev. Anal. Numer. Theor. Approx., 34(2005), no. 1, 37-45
[4] Birou M., Some interpolation schemes with triangular and rectangular nodes of Hermite type, Numerical Analysis and Approximation Theory, Cluj, 2006, to appear
[5] Coman Gh., Cătinaş T., Birou M., Oprişan A., Oşan C., Pop I., Somogyi I. and Todea I., Interpolation operators. House of the Book of Science, Cluj-Napoca, 2004
[6] Delvos F. J. and Posdorf H., Boolesche zweidimensionale Lagrange Interpolation, Computing 22(1979), 311-323
[7] Delvos F.-J. and Posdorf H., Generalized Biermann interpolation, Resultate Math. 5(1982), 6-18
[8] Delvos F. J. and Schemp W., Boolean methods in interpolation and approximation, Pitman Research Notes in Math., Series 230 New York 1989
[9] Gordon W. S., Distributive lattices and approximation of multivariate functions, in Proc. Symp. Approximation with special emphasis on Spline Function (Madison, Wisc. 1969), (I.J. Schoenberg ed.), pp. 223-277
[10] Gordon W. S., Blending function methods of bivariate and multivariate interpolation and approximation, SIAM J. Numer. Anal., 8(1971), 158-177
[11] Gordon W. S. and Hall C. A., Transfinite element methods: blending function interpolation over arbitrary curved element domains, Numer. Math. 21(1973), 109-129
[12] Lorentz R. A., Multivariate Birkhoff Interpolation, Springer-Verlag, 1992
[13] Stancu D. D., The remainder of certain linear approximation formulas in two variables, SIAM J. Numer. Anal., Serie B, 1(1964), 137-163
[14] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill, New York, 1971
Babeş Bolyai University
Faculty of Mathematics and Computer Science
M. KogĂlniceanu 1

400084 CLUJ-NAPOCA, ROMÂNIA
E-mail address: mbirou@math.ubbcluj.ro

[^0]: Received: 10.09.2006. In revised form: 21.11.2006.
 2000 Mathematics Subject Classification. 41A05, 41A10, 41A65.
 Key words and phrases. Biermann interpolation, Birkhoff interpolation, interpolation projectors, approximation order.

