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Some primality and factoring tests

CRISTINA FLAUT

ABSTRACT. In this paper we try to give some properties of strong pseudo-prime numbers and their
applications in cryptography and algebra, more precisely in the factorization in Z[i].

1. INTRODUCTION

The Miller-Rabin test

Proposition 1. Let p > 2 be a prime number and let p − 1 = 2ts, with s an odd number.
Let a ∈ Z, gcd(a, p) = 1. Then as ≡ 1mod p or there is an integer k, 0 ≤ k < t such that

a2
ks ≡ −1mod p.

Proof. Let ak = a2
ksmod p, 0 ≤ k ≤ t. From Fermat’s Little Theorem, we have

at ≡ 1mod p. Then we have
i) ak ≡ 1mod p, for all k; or
ii) There is k ∈ {1, 2, ..., t − 1}, p ∤ (ak − 1) and ak+1 ≡ 1mod p.

Then we have ak+1 = a2
k ≡ 1mod p. So that ak ≡ −1mod p. �

Proposition 2. Let n be an odd integer and n − 1 = 2ts, with s an odd number. If we

found an element a ∈ Z, 2 ≤ a ≤ n − 1, such that n ∤ (as − 1) and n ∤ (a2
ks + 1), for all

k ∈ {1, 2, ..., t − 1}, then n is not a prime element.

The algorithm

Input: N an odd integer to test for primality.
Output: Composite, if N is composite, otherwise N could be prime.

1) Let N be an odd integer. Write N − 1 = 2ts.

2) We choose randomly an integer a such that 1 < a < N . If, for all k, N ∤

(as − 1) and N ∤ (a2
ks + 1), then N is composite. Otherwise, N is probably

prime.

Remark 1. The running time of this algorithm is O(k x log3 N), where k is the num-
ber of different value of a which we test. Unfortunately there are the numbers
which pass the test and they are composite. In [1], we found a number which is
not prime and passes the Miller-Rabin test for the basis a,

a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31} :
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N = 1195068768795265792518361315725116351898245581 =

= 24444516448431392447461 · 48889032896862784894921.

In [1] it is shown that a composite number could passes the Miller-Rabin test for
at most 1/4 of the possible bases a.

Definition 1. Let N be an odd integer. If N − 1 = 2ts, with s an odd number, then
the number N is called a strong pseudo-prime number in basis a, with gcd(a,N) =

1, if as ≡ 1mod N or there is an integer k, 0 ≤ k < t such that a2
ks ≡ −1mod N .

In the next, we give a procedure, with Maple, for finding the small strong
pseudo-prime numbers in basis a, with a ∈ {2, 4, 5, 6, 7, 8, 9, 10}.

rm:=proc(nn,a)local s,t,r,m,q,z,v,i; s:=nn-1:t:=0:r:= 1: for i from
1 to nn do if s mod 2=0 then t:=t+1:s:=s/2:fi:od: r:=(nn-1)/2 ˆt:
m:=0:q:=0:m:=-1 mod nn:z:=0:q:=aˆr mod nn: if q=1 then RETU RN(1)
:fi: if q<>1 then for i from 0 to t-1 do v:=(aˆ(r * (2ˆi)))mod nn:
if v=m then z:=z+1:fi:od:if z<>0 then RETURN(1):fi:fi:end :

We test this procedure for a = 2. Then we have:

a:=2: for nn from 2 to 10000 do if gcd(nn,a)=1 and rm(nn,a)=1 a nd
isprime(nn)=false then print(nn):fi:od:

2047
3277
4033
4681
8321

In the same way, for a = 3, we have N ∈ {121, 286, 703, 1891, 3281, 8401,

8911}. For a = 4,we get N ∈ {341, 1387, 2047, 3277, 4033, 4371, 4681, 5461,

8321, 8911}. For a = 5, we obtain N ∈ {4, 124, 781, 1541, 5461, 5611, 5662, 7813}.
For a = 6, we have N ∈ {217, 481, 1111, 1261, 2701, 3589, 5713, 6533}. For a = 7, we
get N ∈ {6, 25, 325, 703, 2101, 2353, 4525}. For a = 8, we obtain
N ∈ {9, 65, 481, 511, 1417, 2047, 2501, 3277, 3641, 4033, 4097, 4681, 8321}. For a = 9,
we have N ∈ {4, 8, 28, 52, 91, 121, 286, 364, 532, 616, 671, 703, 946, 1036,

1288, 1541, 1729, 1891, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636,

5356, 5551, 6364, 7381, 8401, 8744, 8866, 8911}. For a = 10, we get
N ∈ {9, 91, 1729, 4187, 6533, 8149, 8401}.

Definition 2. Let N be an odd integer. The number N is called a pseudo-prime
number in basis a, with gcd(a,N) = 1, if aN−1 ≡ 1mod N .This number passes the

Fermat test.

Proposition 3. a) There are infinitely many strong pseudo-primes for the basis 2.

b) If n is a strong pseudo-prime in basis a, then n is a strong pseudo-prime in basis
ai,∀i ∈ N.
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Proof. a) First of all, we prove that if n is a pseudo-prime number in basis 2, then
the number N = 2n − 1 is a pseudo-prime in basis 2. Indeed, N − 1 = 2(2n−1 − 1).
Since 2n−1 ≡ 1 mod n, then n | 2n−1 − 1, hence n | N − 1 therefore N − 1 = nq.

Since 2n ≡ 1mod N, we have 2N−1 ≡ 1mod N, then is pseudo-prime. It follows
that we have an infinitely pseudo-primes in basis 2. We prove that N is a strong
pseudo-prime in basis 2. With the notation from the Proposition 1., we have t = 1
and s = 2n−1 − 1. Then N is a strong pseudo-prime in basis 2 if and only if either

2s ≡ 1mod N or there is an integer k, 0 ≤ k < t such that 22
ks ≡ −1mod N . For

k = 0, we have 2s ≡ ±1mod N.

b) Suppose that n − 1 = 2ts, with s an odd number. If as ≡ 1mod n, then

(as)i ≡ 1mod n. If a2
ks ≡ −1mod n , for an integer k, 0 ≤ k < t, then if i = 2rq, q

being an odd number, we have the possibilities:
i) r > k, then (ai)s ≡ 1mod n;

ii) r ≤ k, then (ai)2
k−rs = (a2

ks)q ≡ (−1)q = −1mod n.� �

The Lehman test

This algorithm finds a non-trivial factor for a natural number n or finds if this
number is a prime number.

The algorithm.[1]

Input: n ∈ Z.

Output: factorization of n.

1) We put B = [n
1

3 ]. We find, to the bound B, a nontrivial factor. If we found a
factor, the algorithm stops here. Otherwise, let k = 0.

2) Let k = k + 1. If k > B, then n is prime and stop the algorithm. Otherwise,
let r = 1 and t = 2 if k is even, r = k + N and t = 4 if k is odd.

3) For all natural numbers x such that 4kn ≤ x2 ≤ 4kn + B2 and x ≡ r mod t,

let z = x2 − 4kn. If z = y2, y ∈ N, then the gcd(x + y, n) = w,w is a factor of n.

Otherwise, use the next value of x. If all possible values of x are tested, then go to
step 2.

Remark 2. If the smallest prime factor p of the natural number n has the property
p3 > n and n = pq, then q is a prime number. In the above algorithm, if we find
the smallest p which is a prime factor of n, such that p3 > n, then we stop the
algorithm and we find the factorization of n.
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2. APPLICATIONS

2.1. Application in cryptography

Proposition 4. [4] If we find a basis a such that the odd number N is a pseudo-prime but
not a strong pseudo-prime in basis a, then we can find quickly a non-trivial factor of N.

Proof. If N is a pseudo-prime number then aN−1 ≡ 1mod N. If N is not a strong
pseudo-prime in basis a, we have that there is an integer k, 0 < k < t such that

a2
ks ≡ 1mod N , where N − 1 =2ts, and s an odd number. Let b = a2

ks, then

b2 ≡ 1mod N . We have N | (b2 − 1) hence gcd(b + 1, N) = d > 1. �

Remark 3. In RSA cryptosystem the module N is chosen such that N is a strong
pseudo-prime. From Proposition 4., if a composite number passes the Fermat test
and it is not a strong pseudo-prime number, then we find that this is a composite
number, we find its divisors and we break the cryptosystem.

2.2. Application in algebra

From Proposition 4., we have that, if the number n is pseudo-prime and it is not
strong pseudo-prime, then this number is composite. In the next, we try to apply
the Miller-Rabin test to detecting the prime numbers in the Euclidean ring Z[i]. In
the Euclidean ring Z[i], we have the norm function

ϕ : Z[i] → N, ϕ(z) = a2 + b2, where z = a + bi, a, b ∈ Z.

This function ϕ has the properties:
1) ϕ(z1z2) = ϕ(z1)ϕ(z2).
2) If ϕ(z) = p, where p ∈ Z is a prime number in Z, then z is a prime number

in Z[i].

Proposition 5. [5] i) If p is a prime number, p = 4k+1 then p is a sum of two squares.
ii) If p = a2 + b2 = x2 + y2, x 6= a, x 6= b, y 6= a, y 6= b, then p is composite.
iii) If p ∈ Z has the form p = 4k + 3, and p is prime in Z, then p is prime in Z[i].
iv) If an odd number n ∈ N is a sum of two non zero square, then it has the form 4k+1.

Proof. i) By Wilson Theorem, we have :

p − 1 ≡ −1 modp

p − 2 ≡ −2 modp

.................
p − 1

2
+ 1 ≡ −

p − 1

2
modp.

We obtain 1 + x2 ≡ 0 modp, with

x =

















p − 1

2









!









2

.



24 Cristina Flaut

It results that

p | (1 + ix) (1 − ix) .

If p is a prime number in Z[i], then p | (1 + ix), or p | (1 − ix), false. Then
p = π1π2....πt, where πi ∈ Z[i] are prime elements for t ≥ 2. Since p2 = ϕ(p) =
ϕ(π1)....ϕ(πt), we have t ≤ 2, then p = π1π2, π1 6= π2 and π1 is not associate with
π2. In this case π1 = a + ib, π2 = a − ib, then p = a2 + b2.

ii) If

p = a2 + b2 = x2 + y2, x 6= a, x 6= b, y 6= a, y 6= b,

we have

a2 − x2 = y2 − b2 ⇒ (a − x) (a + x) = (y − b) (y + b) .

If a and x are odd numbers and b and y are even numbers then

a − x

y − b
=

y + b

a + x
=

q

r
.

Then we have a − x = sq, y − b = sr and y + b = wq, a + x = wr. We obtain
a = 1

2
(sq + wr), b = 1

2
(sr + wq) and n = a2 + b2 = 1

4
[(sq + wr)2 + (sr + wq)2] =

1

4
(q2 + r2)(s2 + w2), s, w ∈ Z. �

Proposition 6. Let n be an odd natural number such that n = a2 + b2 in a unique way.
Then n is a prime number or it has only one factor of the form 4k + 1 at power one and the
other factors are even power of prime number of the form 4k + 3.

Proof. We suppose that n is not a prime number. Then its prime factors are the form
4k + 3 or 4k + 1. Let p1 = a2

1 + b2
1 and p2 = a2

2 + b2
2 two prime divisors of n. Then

p1p2 =
(

a2
1 + b2

1

) (

a2
2 + b2

2

)

= a2
1a

2
2 + a2

1b
2
2 + b2

1a
2
2 + b2

1b
2
2 + 2a1a2b1b2 − 2a1a2b1b2 =

(a1b2 + b1a2)
2

+ (a1a2 − b1b2)
2

= (a1b2 − b1a2)
2

+ (a1a2 + b1b2)
2
. Since we have a

unique writing of n like a sum of two squares, we obtain that b1a2 = 0 and b1b2 = 0
or a1b2 = a1a2. From the first, we have that b1 = 0, false, from the second we have
that a1 = 0, or b2 = a2, false. So that, if n are prime divisors only of the form
4k + 1, then n has a two distinct writings like a sum of two non-zero square. Then,
we have divisors of the form 4k + 3 and only one of the form 4k + 1, at power one.
Since n is a sum of two squares, the prime divisors of the form 4k + 3 have even
power. Indeed, if the prime factors have the form (4k + 3) and (4t + 3) at power
one, then we have a2 + b2 = (4k + 3) (4t + 3) . We obtain that (4k + 3) , is prime in
Z and in Z[i], and divides a2 +b2 = (a+bi)(a−bi) in Z[i], so that (4k + 3) | (a+bi).

It follows (4k + 3) | a and (4k + 3) | b, so that (4k + 3)
2
| a2 + b2, false. �

Remark 4. For a composite number n, like in the above proposition, we observe

that this number has the prime factors smallest than n
1

3 . Indeed, if n = p2q, p =

4k + 3, q = 4k + 1 are prime and p > n
1

3 , q > n
1

3 , then n = p2q > n
1

3 n
1

3 n
1

3 = n,

false. That factor we can find quickly. If, for n odd, such that n is written like a
sum of two non-zero squares, in a unique way, we don’t find a prime factor less

than n
1

3 , then n is a prime number.
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If we apply the Miller-Rabin test we obtain the composite numbers passing the
test. We observe that in our case, we apply this test to odd numbers which are
sums of two squares, so that they have the form 4k + 1. From Proposition 5. ii), we
test whether these numbers could be write as a sum of two square in two different
ways. In this case these numbers are composite and, from above proposition, we
have their factorization. First, we verify if n is a square, n = m2. If m = 4k + 3
is prime then we have that z = m or z = mi, is prime in Z[i]. Otherwise, z is a
composite.

The Algorithm

1) We apply the Miller-Rabin test to the number n which is not a square. If the
test return composite, then n is composite and z is not a prime element in Z[i].
Otherwise, go to the step 2).

2) If n is not a square, we test if n could be write as a sum of two squares in
two different ways. If the answer is positive, then n is composite in Z and z is
composite in Z[i] and we have their factorization. Otherwise, n could be prime
and z is prime, or n has a only prime divisor of the form 4k + 1, and the other
factors are the even power of prime numbers of the form (4k + 3) , so that z is not
a prime element. Using the above remark, we choose the prime factors less than

n
1

3 . If we don’t find then n is a prime number.
We can use the Lehman test for the factorization of the number n, n = pα1

1 ...pαt

t

By the Proposition 6., we have that pj = (aj +bji)(aj−bji) (pj has the form 4s+1),

or pj = 4k +3 and αj is even. Then z is of the form z = iβ1

t
∏

j=1

(aj ± bji)
αj . For ”±”,

we verify if (aj + bji) | z or (aj − bji) | z .

Example. Let z1 = 57 + 70i, z2 = 7 + 90i. We have ϕ(z1) = ϕ(z2) = 8149. Let
n = 8149. Now, if we use the Miller-Rabin test, n passes the test for the basis 10.

n:=8149:s:=n-1:t:=0:r:=1: for i from 1 to n do if s mod 2=0
then t:=t+1:s:=s/2:fi:od: r:=(n-1)/2ˆt:print(t):print (r):

2

2037

a:=10:m:=0:q:=0:m:=-1 mod n:z:=0:q:=aˆr mod n: if q=1 then
print(‘IS PRIME‘):fi: if q<>1 then for i from 0 to t-1 do

v:=(aˆ(r * (2ˆi)))mod n:if v=m then z:=z+1:fi:od:
if z=0 then print(‘IS NOT PRIME‘) else

print(‘IS PRIME‘):fi:fi:

IS PRIME

Then we use the Miller-Rabin test for Z[i], and, with Maple, we obtain:

mm:=sqrt(n):if type (mm,integer) then print(‘is a square‘ ):
else ki:=0:for ii from 1 to n do jj:=n-iiˆ2:

if iiˆ2< n and type (sqrt(jj),integer) then
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print(ii):ki:=ki+1 :fi:od:
if ki>=4 then print(‘is not prime‘) else

print (‘is prime‘):fi:fi:

7
57
70
90

a:=7;b:=90;x:=57;y:=70;s:=gcd(x-a,b-y);
q:=(x-a)/s;r:=(b-y)/s;w:=gcd(y+b,x+a);
n1:=(qˆ2+rˆ2);n2:=1/4 * (sˆ2+wˆ2);n:=n1 * n2;

a := 7
b := 90
x := 57
y := 70
s := 10

q := 5
r := 2

w := 32
n1 := 29

n2 := 281
n := 8149

Then we obtain that n is not prime in Z and that z1 and z2 are not prime in Z[i].
We factorize n, n = 29 · 281, with 29 = 4 + 25 and 281 = 25 + 256 prime numbers.
Then, for example, z1 = iβ1(2 ± 5i)(5 ± 16i). We test either if 2 + 5i divides n or
2 − 5i divides n. We have 2 + 5i | n and 5 + 16i | n. Then z1 = i3(2 + 5i)(5 + 16i).
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