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About the orthogonal relations in the statistical
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ABSTRACT. Let X, Y ∈ L2(Ω, K, P ) be a pair of random variables, where L2(Ω, K, P ) is the space
of random variables with finite second moments. If we suppose that X is an observable random vari-
able but Y is not, than we wish to estimate the unobservable component Y from the knowledge of
observations of X using a linear or nonlinear function of them. In this paper, using some definitions
and properties of the linear mean-square estimation as well as the orthogonality principle we present
some implications of them in the statistical estimation.

1. ORTHOGONALITY PRINCIPLE IN THE STATISTICAL ESTIMATION

Let X and Y two random variables and we suppose that only X can be ob-

served. If we consider any function X̂ = g(X) on X, then that is called an estimator

for Y. A desirable property of any estimator X̂ of Y would be that

E(X̂) = Y, (1.1)

i.e., the estimator X̂ to be unbiased.

If X̂ is an unbiased estimator, then the matrix

Ke = E[(X̂ − E(X̂))(X̂ − E(X̂))T ], (1.2)

is its covariance matrix of which diagonal terms are the variances of the estimator’s
components. The estimator in this last case is called the minimum variance unbiased
estimator. This type of estimator will be our choice for the optimum or best estimator.

Definition 1.1. We say that a function X∗ = g∗(X) on X is best estimator in the
mean-square sense for the random variable Y if

E{[Y − X∗]2} = E{[Y − g∗(X)]2} = inf
g

E{[Y − g(X)]2}. (1.3)

Remark 1.1. In the next we consider (n + 1) random variables

Y,X1,X2, ...,Xn ∈ L2(Ω,K, P ) (1.4)

and we wish to estimate Y by a nonlinear function on random vector

X =(X1,X2, ...,Xn)T (1.5)
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of the form

X̂0 = g0(X) = g0(X1,X2, ...,Xn) (1.6)

so as to minimize the mean-square error

e = e(Y, X̂0) = E[(Y − X̂0)
2], (1.7)

that is, to have

emin(Y, X̂0) = E[(Y − X̂0)
2] =

= E
{
[Y − g0(X1,X2, ...,Xn)]2]

}
. (1.8)

Theorem 1.1. [2] The random variable

X̂0 = g0(X1,X2, ...,Xn) = g0(X) =

= E[Y | (X1,X2, ...,Xn)T ] =

= E(Y | X), (1.9)

defined by the conditional expectation of Y with respect to random vector X and with the
real values of the form

E[Y | X = x] =

∞∫

−∞

yf(y | x)dy, (1.10)

for any n−dimensional real point x of the form

x =(x1, x2, .., xn)T ∈ Dx = {x ∈ R
n|f(x1, .., xn) = f(x) > 0}, (1.11)

represents an optimal estimator (the best estimator in the mean-square sense) for the ran-
dom variable Y, that is,

emin(Y, X̂0) = min
X̂

E[(Y − X̂)2] =

= E
{
[Y − g0(X)]2]

}
=

= E
{
[Y − E(Y | X)]2

}
. (1.12)

Remark 1.2. The estimation problem is considerably simplified if one seeks an
estimate of X0 by a linear combination of X1,X2, ...,Xn of the form

gn(X1,X2, ...,Xn) =

n∑

i=1

aiXi, where ai ∈ R, i = 1, n. (1.13)

In a such case the problem is to find the values â1, â2, ..., ân of the constants
a1, a2, ..., an such that the mean-square error

e = e(a1, a2, ..., an) = M [(X0 −

n∑

i=1

aiXi)
2] (1.14)

is minimum, namely
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emin = emin[X0, gn(X1,X2, ...,Xn)] =

= min
ai∈R

E[(X0 −
n∑

i=1

aiXi)
2] =

= E[(X0 −

n∑

i=1

âiXi

︸ ︷︷ ︸
=X̂0

)2] =

= E[(X0 − X̂0)
2] =

= e(â1, â2, ..., ân). (1.15)

If we consider that
E(Xi) = 0, i = 1, n, (1.16)

then the constants â1, â2, ..., ân can be determined in terms of the second moments

Kij = E(XiXj) = cov(Xi,Xj), i, j = 0, n. (1.17)

Theorem 1.2. [3] (The orthogonality principle) The constants âi, i = 1, n, that mini-
mize the mean-square error are such that the error vector

X0 − X̂0 = X0 −
n∑

i=1

âiXi, (1.18)

is orthogonal to the random variables Xi, i = 1, n, that is, if we have the following orthog-
onality relations

E

[
(X0 −

n∑

i=1

âiXi)Xj

]
= E

[
(X0 − X̂0)Xj

]
= 0, j = 1, n. (1.19)

2. RELATIONS IMPLIED BY THE ORTHOGONALITY PRINCIPLE

Let F(Ω,K, P ) be the family of all random variables defined on (Ω,K, P ) and

Lp = Lp(Ω,K, P ) = {X ∈ F(Ω,K, P ) | E(|X|
p
) < ∞} , p ∈ N

∗ (2.1)

be the set of random variables with finite moments of order p, that is,

βp = E(|X|
p
) =

∫

R

|x|
p
dF (x) < ∞, p ∈ N

∗, (2.2)

where

F (x) = P (X < x), x ∈ R (2.2a)

is the distribution function of the random variable X.

Lemma 2.1. [3] The set Lp(Ω,K,P) represents a linear space.
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A important role among the spaces Lp = Lp(Ω,K, P ), p ≥ 1, is played by the
space L2 = L2(Ω,K, P )− the space of random variables with finite second moments.

Definition 2.1. If X,Y ∈ L2(Ω,K, P ), then the distance in mean -square be-
tween X and Y , denoted by d2(X,Y ),is defined as

d2(X,Y ) = ‖X − Y ‖ = [E(|X − Y |
2
)]1/2. (2.3)

Definition 2.2. If (X,Xn, n ≥ 1) ⊂ L2(Ω,K, P ), then about the sequence
(Xn)n∈N∗ is said to converge to X in mean square (converge in L 2) if

lim
n→∞

d2(Xn,X) = lim
n→∞

E(|Xn − X|
2
)1/2 =

= lim
n→∞

E(|Xn − X|
2
) = 0. (2.4)

We write

l.i.m.Xn = X or Xn
m.p.
−→ X,n → ∞, (2.4a)

and call X the limit in the mean (or mean square limit) of Xn.

Remark 2.1. If X ∈ L2(Ω,K, P ), then

V ar(X) = E[(X−m)2] = E[|X − m|
2
] = ‖X − m‖

2
= d2

2(X,m), m = E(X) (2.5)

Remark 2.2. If we consider the linear space H ≡ L2(Ω,K, P ) and Xi ∈ H, i = 0, n,

then the set

Hn+1 = {X | X =

n∑

i=0

aiXi, ai ∈ R, E(X2
i ) < ∞, i = 0, n}, (2.6)

is a linear subspace of H (Hn+1 ⊂ H) generated by the random variables of the finite
system

{X0,X1,X2, ...,Xn.}

In a such case the covariance matrix, denoted by K = KX, associated to the real ran-
dom vector

X =(X0,X1,X2, ...,Xn)T , (2.7)

has the form

K= KX = E[(X − µ)(X − µ)
T
] =

=





K00 K01 K02 ... K0n

K10 K11 K12 ... K1n

K20 K21 K22 ... K2n

... ... ... ... ...

Kn0 Kn1 Kn2 ... Knn




, (2.7a)

where
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Kij = E[(Xi − µi)(Xj − µj)], i, j = 0, n, (2.7b)

Kii = E[(Xi − µi)
2] = σ2

i , µi = E(Xi), i = 0, n (2.7c)

and

µ =E(X) = (µ0, µ1, µ3, ..., µn)T . (2.7d)

Remark 2.3. If X ′,X ′′ ∈ Hn+1 and

X ′ =

n∑

i=0

a′
iXi,X

′′ =

n∑

i=0

a′′
i Xi, (2.8)

then the scalar product associated

(X ′,X ′′) = E(X ′X ′′) =

n∑

i=0

n∑

j=0

a′
ia

′′
j Kij (2.9)

has the properties






a) (X ′,X ′) ≥ 0
b) (X ′,X ′) = 0 ⇐⇒ X ′ = 0
c) (aX ′ + b′′,X ′′′) = a(X ′,X ′′′) + b(X ′′,X ′′′), a, b ∈ R

(2.9a)

Also, using a such scalar product the norm will be defined as

‖ X ′ ‖=
√

(X ′,X ′). (2.9b)

More, the distance in mean square between X ′ and X ′′, that is,

d2(X
′,X ′′) = [E(|X ′ − X”|

2
)]1/2 =

=
√

(X ′ − X ′′,X ′ − X ′′) =

= ‖X ′ − X ′′‖ (2.10)

is a distance in the Euclidean subspace Hn+1.

In accordance with the terminology of functional analysis, a space with the
scalar product (2.9) is a Hilbert space. Hilbert space methods are extensively used in
probability theory to study properties that depend only on the first two moments
of random variables (′′L2 − theory′′).

Remark 2.4. If we consider the linear subspace

Hn = {X | X =

n∑

i=1

aiXi, ai ∈ R, E(X2
i ) < ∞, i = 1, n}, Hn ⊂ Hn+1 ⊂ H,

(2.11)
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then there is a random vector X̂0 of the form

X̂0 =

n∑

i=1

âiXi (2.12)

which satisfies the following condition

∥∥∥X0 − X̂0

∥∥∥ = min
X̂∈Hn

∥∥∥X0 − X̂
∥∥∥ = min

ai∈R,i=1,n

∥∥∥∥∥X0 −
n∑

i=1

aiXi

∥∥∥∥∥ , (2.13)

if the random variables X1,X2, ..,Xn are linearly independent, that is, the equation

P

[
ω :

n∑

i=1

aiXi(ω) = 0

]
= 1 (2.14)

is satisfied only when all ai, i = 1, n are zero.
This last relation represents just the linearly independent of the random vari-

ables X1,X2, ..,Xn if we have in view the next theorem.

Theorem 2.1. Let X ∈ L2(Ω,K, P ). If

E(X2) = 0, (2.15)

then the random variable X take the value zero with probability one ( almost surely, almost
everyhere), that is,

P [ω : X(ω) = 0] = 1 or P [ω : X(ω) 6= 0] = 0. (2.16)

Proof. To prove this theorem we suppose that from the relation (2.15) would
result an another relation of the form

P [ω : X(ω) 6= 0] 6= 0. (2.17)

Then, a such relation implies the existence of a real number η > 0 such that

P [ω : |X(ω)| > η] =

∫

|x|>η

f(x)dx 6= 0. (2.17a)

But, if we have in view the definition for the second moment α2 = E(X2), we
obtain

E(X2) =

∞∫

−∞

x2f(x)dx =

=

∫

|x|≤η

x2f(x)dx +

∫

|x|>η

x2f(x)dx =

≥

∫

|x|>η

x2f(x)dx ≥ η2

∫

|x|>η

f(x)dx > 0,

and, from here, it follows the inequality

E(X2) > 0, (2.15a))



About the orthogonal relations in the statistical estimation 33

which evidently represents a contradiction of the hypothesis (2.15).

Theorem 2.2. The orthogonality relations from the Theorem 1.2 , that is,

E

[
(X0 −

n∑

i=1

âiXi)Xj

]
= E

[
(X0 − X̂0)Xj

]
= 0, j = 1, n. (2.18)

are equivalently with the relation

(X0 − X̂0, X̂) = 0, (2.19)

or with the relations
n∑

i=1

âi(Xi,Xj) = (X0,Xj), j = 1, n, (2.20)

where X0,X1,X2, ...,Xn ∈ L2(Ω,K, P ) = H and

X̂0 =
n∑

i=1

âiXi, âi ∈ R, i = 1, n, X̂0 ∈ Hn,Hn ⊂ H (2.20a)

X̂ =

n∑

j=1

ajXj , aj ∈ R, j = 1, n, X̂ ∈ Hn,Hn ⊂ H. (2.20b)

Proof. Indeed, using the relations (2.18) and (2.19) it follows a new relation

M
[
(X0 − X̂0)X̂

]
= 0, (2.21)

which, then when we have in view the properties of the scalar product, can be
represented in the form

(X̂0, X̂) = (X0, X̂). (2.22)

Then, using the relations (2.20a) and (2.20b), the scalar products (X̂0, X̂) and

(X0, X̂) can be written as

(X̂0, X̂) = (X̂0,

n∑

j=1

ajXj) =
n∑

j=1

aj(X̂0,Xj) =

=

n∑

j=1

aj

(
n∑

i=1

âiXi,Xj

)
=

=

n∑

j=1

aj

[
n∑

i=1

âi(Xi,Xj)

]
, (2.22a)

(X0, X̂) = (X0,

n∑

j=1

ajXj) =
n∑

j=1

aj [(X0,Xj)]. (2.22b)

In final, using these two representations of the scalar products, from (2.22) we
obtain the relations (2.20) which, in fact, represents an another form of the linear
system
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




K11â1 + K12â2 + ... + K1nân = K01

K21â1 + K22â2 + ... + K2nân = K02

... ... ... ... ... ... ... ... ...

Kn1â1 + Kn2â2 + ... + Knnân = K0n

(2.23)

Remark 2.5. The matrix form of this system will be





(X1,X1) (X1,X2) ... (X1,Xn)
(X2,X1) (X2,X2) ... (X2,Xn)
... ... ... ...

(Xn,X1) (Xn,X2) ... (Xn,Xn)









â1

â2

...

ân



 =





(X0,X1)
(X0,X2)
...

(X0,Xn)



 , (2.24)

where

G =





(X1,X1) (X1,X2) ... (X1,Xn)
(X2,X1) (X2,X2) ... (X2,Xn)
... ... ... ...

(Xn,X1) (Xn,X2) ... (Xn,Xn)



 (2.25)

is Gram’s matrix associated to the n−dimensional random vector

X = (X1,X2, ...,Xn)T ,

where 




(Xi,Xj) = E(XiXj) = cov(Xi,Xj), i, j = 1, n, i 6= j

(Xi,Xi) = E(X2
i ) = σ2

i , i = 1, n,

(2.25a)

then when we have in view the hypothesis

E(Xi) = 0, i = 1, n. (2.25b)

If the components of the random vector X = (X1,X2, ...,Xn)T are mutually in-
dependent , then from (2.25b) it follows that these components will be and mutually
orthogonal , that is, we have






(Xi,Xj) = M(XiXj) = cov(Xi,Xj) = 0, i, j = 1, n, i 6= j

(Xi,Xi) = M(X2
i ) = σ2

i , i = 1, n.

(2.25c)

In these new conditions the determinant of Gram satisfies the condition

det G =
n∏

i=1

σ2
i 6= 0, (2.26)

which implies the following conclusion: the random variables X1,X2, ...,Xn are
linearly independent and the unique solution of the system (2.23) will be

âi =
(X0,Xi)

σ2
i

, i = 1, n. (2.27)

Definition 2.3. Let F(Ω,K, P ) be the family of all random variables defined on
(Ω,K, P ) and
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H = L2(Ω,K, P ) =
{

X ∈ F(Ω,K, P ) | E(|X|
2
) < ∞

}
, (2.28)

be the set of random variables with finite moments of order 2, that is,

β2 = E(|X|
2
) =

∫

R

|x|
2
dF (x) < ∞. (2.29)

Then, the random variable

X̂0 =
n∑

i=1

âiXi, X̂0 ∈ Hn, (2.30)

represents an optimal estimator (the best estimator) for the unknown random vari-
able X0,X0 ∈ Hn+1, if

∥∥∥X0 − X̂0

∥∥∥ =

∥∥∥∥∥X0 −

n∑

i=1

âiXi

∥∥∥∥∥ =

min
X̂∈Hn

∥∥∥X0 − X̂
∥∥∥ = min

ai∈R,i=1,n

∥∥∥∥∥X0 −
n∑

i=1

aiXi

∥∥∥∥∥ . (2.31)

The geometric meaning of the optimal estimator X̂0, X̂0 ∈ Hn, is the following:

X̂0 is the ”projection” of X0, X0 ∈ Hn+1 on the linear subspace Hn.
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