
CREATIVE MATH. & INF.
16 (2007), 42 - 53

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

Solving the generalized minimum spanning tree
problem with simulated annealing

PETRICĂ POP, COSMIN SABO, CORINA POP SITAR and MARIAN V. CRĂCIUN

ABSTRACT. We consider a generalization of the minimum spanning tree problem, called the gen-
eralized minimum spanning tree problem, denoted by GMST. It is known that the GMST problem is
NP-hard. We present an effective algorithm for this problem. The method combines a simulated an-
nealing algorithm (SA) with a local greedy algorithm. The heuristic that we proposed found solutions
that were optimal for graphs with nodes up to 280 and were within at most 24% of optimality for larger
problems, while the existing algorithms from the literature become computationally intractable.

1. INTRODUCTION

Many combinatorial optimization problems are NP-hard, and the theory of NP-
completeness has reduced hopes that NP-hard problems can be solved within
polynomially bounded computation times. Nevertheless, sub-optimal solutions
are sometimes easy to find. Consequently, there is much interest in approximation
and heuristic algorithms that can find near optimal solutions within reasonable
running time. Heuristic algorithms are typically among the best strategies in terms
of efficiency and solution quality for problems of realistic size and complexity.

In contrast to individual heuristic algorithms that are designed to solve a spe-
cific problem, metaheuristics are strategic problem solving frameworks that can be
adapted to solve a wide variety of problems. Metaheuristic algorithms are widely
recognized as one of the most practical approaches for combinatorial optimization
problems. Among representative metaheuristics are genetic algorithms, simulated
annealing, tabu search and so on. Useful references regarding metaheuristic meth-
ods can be found in [7], [12] and [14].

The GMST problem was introduced in [11], and is defined on an undirected
graph G = (V,E) whose nodes are partitioned into a number of subsets (clusters)
and whose edges have a nonnegative cost. The GMST problem asks for finding a
minimum-cost tree in G that includes exactly one node from each cluster. Note that
the well-known minimum spanning tree problem is a special case of the GMST
problem where each cluster consists of only one node. The GMST problem has
several applications to location and telecommunication problems.

The GMST problem was solved to optimality for nodes up to 200 by [3] using a
branch-and-cut algorithm and by [13] using a rooting procedure based on a new
mixed integer formulation of the GMST problem, but the problem becomes com-
putationally intractable for larger instances.

Received: 20.09.2006. In revised form: 10.01.2007
2000 Mathematics Subject Classification. 90B10, 90C10, 90C27, 90C39.
Key words and phrases. Generalized minimum spanning tree problem, dynamic programming, simulated

annealing.

42

Solving the generalized minimum spanning tree problem with simulated annealing 43

More information on the problem and its applications can be found in [4], [11,
13].

The aim of this paper is to provide:

(i) an exact exponential time algorithm for the GMST problem, which has
polynomial complexity when the number of clusters is fixed;

(ii) an effective heuristic based on simulated annealing.

The paper is organized as follows. In Section 2 we give the formal definition of
the GMST problem and discuss its complexity. The exact algorithm is presented
in Section 3. Two integer programming formulations of the GMST problem are
presented in Section 4. In Section 5, we present an overview of simulated anneal-
ing. In Section 6, we solve the GMST problem with simulated annealing combined
with a local greedy algorithm. In Section 7, we present the details of the heuris-
tic implementation and the computational results obtained on various instances of
the problem and compare them with previous results. Finally, concluding remarks
are presented in Section 8.

2. DEFINITION AND COMPLEXITY OF THE GMST PROBLEM

Let G = (V,E) be an n-node undirected graph. Let V1, . . . , Vm be a partition of
V into m subsets called clusters (i.e., V = V1 ∪ V2 ∪ . . . ∪ Vm and Vl ∩ Vk = ∅ for all
l, k ∈ {1, . . . ,m} with l 6= k). We assume that edges are defined between all nodes
which belong to different clusters. We denote the cost of an edge e = (i, j) ∈ E by
cij or by c(i, j) and the costs of the edges are chosen integers.

The generalized minimum spanning tree (GMST) problem asks for finding a
minimum-cost tree T spanning a subset of nodes which includes exactly one node
from each cluster Vi, i ∈ {1, . . . ,m}. We will call such a tree a generalized spanning
tree.

In [11] it is proved that the GMST problem is NP-hard. [13] proved a stronger
result:

Theorem 2.1. The Generalized Minimum Spanning Tree problem on trees is NP-hard.

The proof of this result is based on a polynomial reduction of the set covering
problem, which is known to be NP-hard (see for example [5]), to the GMST prob-
lem defined on trees.

3. AN EXACT ALGORITHM FOR THE GMST PROBLEM

In this section, we present an algorithm that finds an exact solution to the GMST
problem based on dynamic programming (see also [13]).

Let G′ be the graph obtained from G after replacing all nodes of a cluster Vi with
a supernode representing Vi. For convenience, we identify Vi with the supernode
representing it. Edges of the graph G′ are defined between each pair of the graph
vertices {V1, ..., Vm}.

Given a spanning tree of G′, which we shall refer to as a global spanning tree,
we use dynamic programming in order to find the corresponding best (w.r.t. cost
minimization) generalized spanning tree.

44 Petrică Pop, Cosmin Sabo, Corina Pop Sitar and Marian V. Crăciun

Fix an arbitrary cluster Vroot as the root of the global spanning tree and orient
all the edges away from vertices of Vroot according to the global spanning tree. A
directed edge 〈Vk, Vl〉 of G′, resulting from the orientation of edges of the global
spanning tree defines naturally an orientation 〈i, j〉 of an edge (i, j) ∈ E where
i ∈ Vk and j ∈ Vl. Let v be a vertex of cluster Vk for some 1 ≤ k ≤ m. All such
nodes v are potential candidates to be incident to an edge of the global spanning
tree. On the graph G, we denote by T (v) denote the subtree rooted at such a vertex
v from G; T (v) includes all vertices reachable from v under the above orientation
of the edges of G based on the orientation of the edges of the global spanning tree.
The children of v ∈ Vk, denoted by C(v), are those vertices u ∈ Vl which are heads of
the directed edges 〈v, u〉 in the orientation. The leaves of the tree are those vertices
that have no children.

Let W (T (v)) denote the minimum weight of a generalized subtree rooted at v.
We want to compute

min
r∈Vroot

W (T (r)).

We are now ready for giving the dynamic programming recursion to solve the
subproblem W (T (v)). The initialization is:

W (T (v)) = 0, if v ∈ Vk and Vk is a leaf of the global spanning tree.

To compute W (T (v)) for an interior to a cluster vertex v ∈ V , i.e., to find the
optimal solution of the subproblem W (T (v)), we have to look at all vertices from
the clusters Vl such that C(v) ∩ Vl 6= ∅. If u denotes a child of the interior vertex v,
then the recursion for v is as follows:

W (T (v)) =
∑

l,C(v)∩Vl 6=∅

min
u∈Vl

[c(v, u) + W (T (u))].

Hence, for fixed v we have to check at most n vertices. Consequently, for the
given global spanning tree, the overall complexity of this dynamic programming
algorithm is O(n2). Since by Cayley’s formula (see [1]), the number of all distinct
global spanning trees is mm−2, we have established the following.

Theorem 3.2. There exists a dynamic programming algorithm which provides an exact
solution to the GMST problem in O(mm−2n2) time, where n is the number of nodes and
m is the number of clusters in the input graph.

Clearly, the above is an exponential time algorithm unless the number of clus-
ters m is fixed.

4. INTEGER PROGRAMMING FORMULATIONS

The GMST problem can be formulated as an integer program in many different
ways, cf. [3], [4], [11] and [13].

For example, introducing the variables xe ∈ {0, 1}, e ∈ E and zi ∈ {0, 1}, i ∈ V ,
to indicate whether an edge e respectively a node i is contained in the spanning
tree, a feasible solution to the GMST problem can be seen as a cycle free subgraph

Solving the generalized minimum spanning tree problem with simulated annealing 45

with m−1 edges, one node selected from every cluster and connecting all the clus-
ters. Therefore the GMST problem can be formulated as the following 0-1 integer
programming problem:

min
∑

e∈E

cexe

s.t. z(Vk) = 1, ∀ k ∈ K = {1, ...,m} (4.1)

x(E(S)) ≤ z(S − i), ∀ i ∈ S ⊂ V, 2 ≤ |S| ≤ n − 1 (4.2)

x(E) = m − 1 (4.3)

xe ∈ {0, 1}, ∀ e ∈ E (4.4)

zi ∈ {0, 1}, ∀ i ∈ V. (4.5)

Here E(S) = {e = (i, j) : i, j ∈ S}, S ⊆ V we use the standard shorthand
notations:

x(F) =
∑

e∈F

xe, F ⊆ E and z(S) =
∑

i∈S

zi, S ⊆ V

For simplicity we used the notation S − i instead of S \ {i}. In the above formu-
lation, constraints (1) guarantee that from every cluster we select exactly one node,
constraints (2) eliminate all the subtours and finally constraint (3) guarantees that
the selected subgraph has m − 1 edges.

This formulation, introduced by [11], is called the generalized subtour elimination
formulation since constraints (2) eliminate all the cycles.

We may replace the subtour elimination constraints (2) by connectivity con-
straints, resulting in the so-called generalized cutset formulation introduced by [11]:

min
∑

e∈E

cexe

s.t. (1), (3), (4), (5) and

x(δ(S)) ≥ zi + zj − 1, ∀ i ∈ S ⊂ V, j /∈ S (4.6)

where for S ⊆ V , the cutset, denoted by δ(S), is defined as usually:

δ(S) = { e = (i, j) ∈ E | i ∈ S, j /∈ S}

We observe that the two formulations described have an exponential number of
constraints since we have to choose subsets of V (constraints (2) and (6)).

5. SIMULATED ANNEALING

Simulated annealing (SA) is a global optimization method that distinguishes
between different local optima and is inspired from Monte Carlo methods in sta-
tistical mechanics. The ideas that form the basis of simulated annealing were first
published by [10] as an algorithm to simulate the cooling of material in a heat bath,
a process known as annealing.

46 Petrică Pop, Cosmin Sabo, Corina Pop Sitar and Marian V. Crăciun

[9] and [2] suggested that this type of simulation could be used to search the
feasible solutions of an optimization problem. Their approach can be regarded as
a variant of the local search technique.

A central problem for local search is the occurrence of local optima, i.e. nodes
in the search space where no neighbor strictly improves over the current node
in terms of the cost function, but which are not global optima. In order to over-
come the local optima, in the simulated annealing heuristic non-improving lo-
cal moves are allowed, but their frequency is governed by a probability function
which changes as the algorithm progresses. It has been shown (see [6]) that with a
”large enough” initial temperature and a proper cooling schedule, SA guarantees
a globally optimal solution. However, this theoretical result is particularly helpful,
since the annealing time to ensure a significant probability of success will usually
exceed the time required for a complete search of the solution space.

The annealing algorithm for a minimization problem with solution space S, ob-
jective function c and neighborhood structure N can be stated as follows:

Select a starting solution s0 ∈ S, an initial temperature T0 > 0, a temper-
ature reduction function α and the number of iterations per temperature
L;
Repeat

Repeat
Randomly select s ∈ N(s0) and compute δ = c(s) − c(s0);
If δ < 0
then s0 = s
else generate random p uniformly distributed in the range (0, 1);
if p < exp(−δ/T) then s0 = s

Until iterationcount = L;
Set T = α(T);
Until stopping condition is true.
s0 is the approximation of the optimal solution.

Here L represents the number of repetitions at each temperature, i.e. the num-
ber of randomly chosen candidate solutions in the neighborhood of the current
solution that are evaluated. Therefore at each stage, L randomly chosen candidate
solutions in the neighborhood of the current solution are evaluated. If a candidate
solution improves on the current solution, it is accepted. Otherwise, it is accepted
with a probability p(T, δ) = exp(−δ/T), which depends on the control parameter
T (the temperature in the physical equivalent) and the amount δ by which a move
worsens the current solution. This relation ensures that the probability of accept-
ing a move to a very poor solution is very small. At the completion of each stage,
the temperature is reduced. The way that the temperature is reduced is known
as cooling schedule. Given a relatively high temperature T at the beginning of the
process, the probability of accepting non-improving moves is fairly high. As the
process continues, the temperature decreases and non-improving moves become
less likely.

Solving the generalized minimum spanning tree problem with simulated annealing 47

The search is continued until there is some evidence to suggest that there is a
very low probability of improving on the best solution found so far. At this stage
the system is said to be frozen.

6. SOLVING THE GMST PROBLEM WITH SIMULATED ANNEALING

In order to implement the simulated annealing algorithm for the GMST prob-
lem a number of decisions must be made. These can be divided into two categories:
generic decisions, which are concerned with parameters of the annealing algorithm
itself; including factors such as the initial temperature, the cooling schedule (gov-
erned by the parameter L, i.e. number of repetitions and the choice of the tempera-
ture reduction function α) and the stopping condition and problem specific decisions,
which involves the choice of the solution space, the form of the cost function, an
initial solution (initialization) and the neighborhood structure employed.

In our implementation of the simulated annealing algorithm for the GMST
problem we chose the following cooling schedule:

1. Initial value of the control parameter, T0.
Following [8], we determine T0 by calculating the average increase in cost
δ+, for a number of random transitions:

T0 =
δ+

ln(χ−1
0)

where χ0 = 0.8 is a given acceptance rate.
2. Final value of the control parameter.

The stopping criteria, determining the final value of the control parameter,
that we used was by fixing the number of values Tk, for which the algo-
rithm is to be executed, ending for a suitable low temperature.

3. Number of repetitions at each temperature.
The number of iterations at each temperature which is related to the size
of the neighborhoods may vary from temperature to temperature. It is
important to spend a long time at lower temperatures to ensure that a local
optimum has been fully explored. Therefore we increased the value of L
arithmetically (by adding a constant factor).

4. Decrement of the control parameter.
We used the following decrement rule:

α(T) = rT

where r is a constant smaller than but close to 1, called the cooling rate.
We used, as [8], r = 0.95. This corresponds to a fairly slow cooling.

In what follows we present the problem specific decisions.

6.1. Solution space. We define the solution space as the set of all the feasible solu-
tions. Suppose that the graph G = (V,E) consists of n nodes which are partitioned
into m clusters V1, ..., Vm having the same number of nodes, i.e.

|V1| = ... = |Vm| =
n

m

48 Petrică Pop, Cosmin Sabo, Corina Pop Sitar and Marian V. Crăciun

By Cayley’s formula we know that the total number of global spanning trees (i.e.
trees connecting the clusters) is equal to mm−2. Given a global spanning tree there

are (
n

m
)m possible generalized spanning trees (feasible solutions of the GMST

problem).
Therefore the solution space of the GMST problem contains

mm−2 · (
n

m
)m = nm · m−2

elements. The number of elements in the solution space is exponentially large, so
that they cannot be explored exhaustively.

6.2. Objective function. We will consider the objective function described in the
two integer programming formulations of the GMST problem, see Section 4.

6.3. Initialization. Simulated Annealing is an improvement heuristic which re-
quires an initial solution. It is desirable to start with a relatively good solution (as
compared, for example with a randomly generated one), otherwise a great deal of
effort will be spent to simply reach the first local minimum.

In our case, an initial feasible solution for the GMST problem was found using
the following greedy algorithm:

• Input: A connected graph G = (V,E) with the nodes partitioned into m
clusters and edges defined between nodes from different clusters with pos-
itive cost.

• Output: A generalized spanning tree T = (W,F) of G.
F := ∅ (F is the edge set of the current tree T)
W := {vi}, vi ∈ Vk , 1 ≤ k ≤ m (W is the node set of T)
while |S| < m do

Among all the edges with exactly one end in W find an edge (vi, vj)
with minimum cost and whenever we choose a node from a cluster delete
all the other nodes from that cluster and all the edges adjacent to the
deleted nodes;

F := F ∪ (vi, vj)
W := W ∪ ({vi, vj} \ W)

end; (while).

A similar algorithm as the greedy algorithm can be applied in order to find a
feasible solution for the GMST problem (i.e. a generalized spanning tree of G) if
we start with a generalized tree T = (W,F) of G (|W | < m), instead of selecting
randomly a node in a random cluster. We will call this algorithm the local greedy
algorithm.

6.4. Neighborhood structure. The neighborhood is one of the most important fac-
tors in designing a simulated annealing algorithm. It should be designed such that
the structures common to good solutions are preserved after the neighborhood
operation is applied.

Solving the generalized minimum spanning tree problem with simulated annealing 49

FIGURE 1. A current solution and a modified solution of the
GMST problem

In the case of the GMST problem, we defined a neighborhood structure as fol-
lows: The neighborhood of any given generalized spanning tree T is defined as the
set of all the generalized spanning trees obtained using the local greedy algorithm
for any subtree of T . The size of the neighborhood of any given generalized span-
ning tree T is given by the number of subtrees. The maximum number of subtrees
of a tree with m nodes is obtained for trees with the nodes distributed on exactly
one level except the root which has degree m − 1. Therefore in this case, the maxi-
mum size of the neighborhood is 2m−1 + m − 1, see [15]. Given a current solution
of the GMST problem, i.e. a generalized spanning tree T , for any subtree U of T ,
using the local greedy algorithm we obtain a candidate solution for the simulated
annealing in the neighborhood of the current solution. A current solution and a
modified solution are shown in the next figure.

In Figure 1, we consider a graph G whose nodes are partitioned into 6 clusters
and a current solution T of the problem. Selecting randomly a subtree U of T (for
example discarding the edges connecting nodes from the clusters V4 with V5 and V2

with V5) we apply the local greedy algorithm in order to obtain the best modified
solution in the neighborhood of T given the subtree U .

7. IMPLEMENTATION DETAILS AND COMPUTATIONAL RESULTS

Our computational experiments were performed on a Dual Intel Pentium III
Processor - 1000 Mhz computer with 512 MB RAM. The combined Simulated An-
nealing and local greedy scheme procedures were written in Java.

After some preliminary tests, we have chosen the following cooling schedule:
we start with a temperature T0 = 100, the cooling rate r = 0.95 will be used to
reduce the temperature in each stage and L = 30 moves are evaluated at each
stage.

We considered an undirected graph G = (V,E) having n nodes which are par-
titioned into m clusters such that each cluster contains the same number of nodes.
Edges are defined between all the nodes from different clusters and the cost of the
edges were generated randomly in the interval [1,100]. For each type of instance
(n,m) we generated randomly five different problems, i.e. with different costs of
the edges. The instances that we used are similar to those considered by Myung
[11] and Feremans [3].

50 Petrică Pop, Cosmin Sabo, Corina Pop Sitar and Marian V. Crăciun

In the next table we compare the computational results obtained for solving
the GMST problem using the combined simulated annealing with a local greedy
algorithm with the computational results given by [3] and [13].

Table 1: Computational results for solving the GMST problem

Pb. size SA algorithm Rooting procedure Branch and cut

m n UB/OPT CPU LB/OPT CPU LB/UB CPU

8 24 100 2.6 100 0.0 100 0.0
32 100 3.7 100 0.0 100 0.2
48 100 5.6 100 0.3 100 1.4
80 100 10.2 100 2.2 100 4.2

10 30 100 4.8 100 0.2 100 1.0
40 100 6.7 100 0.3 100 1.0
60 100 10.8 100 0.7 100 3.2
100 100 20.6 100 1.9 100 8.8

12 36 100 8.3 100 0.7 100 1.8
48 100 11.6 100 0.9 99.2 3.2
72 100 19.1 100 3.7 100 6.8
120 100 39.0 100 9.3 - -

15 45 100 16.6 100 1.3 100 3.6
60 100 21.6 100 1.7 97.1 6.2
90 100 39.7 100 9.6 100 21.4
150 100 80.2 100 34.1 98.8 42.4

18 54 100 27.2 100 2.6 99.5 7.6
108 100 68.1 100 13.8 - -
180 100 143.8 100 150.4 - -

20 60 100 37.5 100 7.2 - -
120 100 181.9 100 33.2 96.3 39.8
200 100 219.8 100 203.8 94.6 191.4

25 75 100 80.8 100 17.5 - -
150 100 221.7 100 266.4 88.3 178.8
200 100 331.1 100 284.5 97.8 140.6

30 90 100 150.4 100 60.2 - -
180 100 412.0 100 721.8 96.6 114.6
240 100 627.4 100 1948.9 - -

40 120 100 382.1 100 142.6 100 92.6
160 100 561.0 100 572.3 94.2 288.6
280 100 691.2 100 25672.3 - -

The first two columns in the table give the size of the problem: the number of
clusters (m) and the number of nodes (n). The next two columns describe the sim-
ulated annealing procedure and contain: the upper bounds obtained as a percent-
age of the optimal value of the GMST problem (UB/OPT) and the computational

Solving the generalized minimum spanning tree problem with simulated annealing 51

times (CPU) in seconds for solving the GMST problem. The last columns con-
tain the lower bounds as a percentage of the optimal value of the GMST problem
(UB/OPT) and the computational times (CPU) in seconds for solving the GMST
problem with the rooting procedure (see [13]) and the lower bounds as a percent-
age of the upper bound of the GMST problem (LB/UB) and the computational
times (CPU) in seconds for solving the GMST problem with a branch and cut al-
gorithm (see [3]). In the last two columns ‘-’ means that for those instances, [3] did
not provide computational results.

It is important to notice that for all the instances considered we were able to
obtain the optimal solution of the GMST problem using our simulated annealing
combined with a local greedy algorithm.

From Table 1, we observe that the computational times in the case of simulated
annealing were bigger compared with the computational times corresponding to
the other methods for instances up to 140 nodes, but for larger instances, while the
computational times for the rooting procedure increase exponentially, the compu-
tational times in the case of simulated annealing are reasonable.

For graphs which contains more than 50 clusters and 200 nodes, we obtained
good solutions which are within at most 24 % of optimality. The computational
results obtained in this case are presented in Table 2. We have considered again for
each type of instance five trials.

Table 2: Computational results for solving large instances of the GMST problem
(average of five trials per type of instance)

Pb. size Simulated Annealing algorithm

m n LB UB Average gap(%) initial sol. CPU

50 200 49 61 24 71 765.7
300 49 55 12 67 1620.5

75 300 74 97 10 104 3545.0
450 74 75 1 87 7440.3

100 300 99 114 15 128 6734.5
400 99 103 4 118 10940.3
600 99 99 0 107 20154.7

The first two columns in the table give the size of the problem: the number of
clusters (m) and the number of nodes (n). The next four columns describe the
simulated annealing procedure and contain: the lower bounds (the optimum for
a graph whose nodes are partitioned into m clusters is at least m − 1), the upper
bounds obtained (UB), the average gap as a percentage, initial solutions and the

52 Petrică Pop, Cosmin Sabo, Corina Pop Sitar and Marian V. Crăciun

computational times (CPU) in seconds for calculating the upper bound of GMST
problem.

As Table 2 shows, for large instances of the GMST problem our simulated algo-
rithm provided good sub-optimal solutions within reasonable running time, while
the other algorithms become computationally intractable.

The explanation for the improvement of the quality solution as the number of
nodes increases for a fixed number of clusters is the following: when the number of
nodes per cluster is increased, then the number of edges is increased and therefore
the number of edges with low cost.

Analyzing the results presented in Tables 1 and 2, we observe that the number
of clusters is a more important factor than the number of nodes for the behavior of
the algorithms.

The quality of the solutions obtained by using the combined simulated anneal-
ing with local greedy algorithm depended on the initial solutions. In about 40%
of the instances considered we were able to get the optimal solution using the first
initial solution. We observed also that good initial solutions were not necessarily
improved to good solutions by simulated annealing.

8. CONCLUSIONS

In this paper we have provided an exact exponential time algorithm for the gen-
eralized minimum spanning tree problem and shown an effective way of solving
the GMST problem using simulated annealing combined with a local greedy algo-
rithm. Our method has been tested and compared with previous methods from
literature on various small to large instances of the problem that are commonly
used for comparative studies. For instances up to 280 nodes our algorithm pro-
vides the optimal solution of the GMST problem and for large instances provides
good sub-optimal solutions within reasonable running time.

REFERENCES

[1] Bondy A., Thomassé S. and Thomasen C., Spanning trees of multipartite graphs, Preprint, 2001
[2] Cerny V., A thermodynamical approach to the traveling salesman problem: an efficient simulated annealing

algorithm, Journal of Optimization Theory and Applications 45 (1985) 41-55
[3] Feremans C., Generalized Spanning Trees and Extensions, PhD Thesis, Universite Libré de Bruxelles,

Belgium, 2001
[4] Feremans C., Labbé M. and Laporte G., A Comparative Analysis of Several Formulations for the Gener-

alized Minimum Spanning Tree Problem, Technical Report IS-MG 2000/22, Universite Libré de Brux-
elles, Belgium; to appear in Networks

[5] Garey M.R. and Johnson D.S., Computers and Intractability: A guide to the theory of NP-Completeness,
Freeman, San Francisco, California, 1979

[6] Geman S. and Geman D., Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration in
Images, IEEE Trans. Patt. Anal. Mac. Int. 6, 721-741

[7] Glover F.W. and Kochenberger G.A., Handbook of Metaheuristics, Kluwer Academic Publishers,
2002

[8] Johnson D., Aragon C., McGeoch L. and Schevon C., Optimization by Simulated Annealing: An Ex-
perimental Evaluation, Part I, Graph Partitioning, Operations Research 37 (1989), 865-892

[9] Kirkpatrick S., Gelatt C.D. and Vecchi M.D. Optimization by Simulated Annealing, Science, Vol. 220,
No. 4598 (1983), 671-680

Solving the generalized minimum spanning tree problem with simulated annealing 53

[10] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H. and Teller E., Equation of State Cal-
culations by Fast Computing Machines, Journal of Chem. Phys., Vol. 21, No. 6 (1953), 1087-1092

[11] Myung Y.S., Lee C.H. and D.w. Tcha, On the Generalized Minimum Spanning Tree Problem, Networks
26, pp. 231-241, 1995

[12] Osman I.H. and Laporte G., Metaheuristics, A Bibliography, Annals of Operations Research, 63,
pp. 231-241, 1996

[13] Pop P.C., The Generalized Minimum Spanning Tree Problem, PhD thesis, University of Twente, The
Netherlands, 2002

[14] Reeves C.R., Modern Metaheuristic Techniques for Combinatorial Problems, Blackwell, Oxford, 1993
[15] Szekely L.A. and Wang H., On subtrees of trees, Research report, University of Carolina, 2004

PETRICĂ POP

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATIS AND COMPUTER SCIENCE

VICTORIEI 76, 430122 BAIA MARE, ROMANIA

E-mail address: pop petrica@yahoo.com

CORINA POP SITAR

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF ECONOMICS

VICTORIEI 76, 430122 BAIA MARE, ROMANIA

E-mail address: sitarcorina@yahoo.com

COSMIN SABO

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATISC AND COMPUTER SCIENCE

VICTORIEI 76, 430122 BAIA MARE, ROMANIA

E-mail address: cosmin sabo@scream.ro

MARIAN V. CRĂCIUN

UNIVERSITY ”DUNĂREA DE JOS” GALAŢI

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

DOMNEASCĂ 47, 800008 GALAŢI, ROMANIA

E-mail address: mcraciun@ugal.ro

