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The generalization of Voronovskaja’s theorem for
exponential operators

OVIDIU T. POP

ABSTRACT. In this paper we will demonstrate a Voronovskaja’s type general theorem for exponen-
tial operators. By particularization, we obtain Voronovskaja’s type theorems for the different operators.

1. INTRODUCTION

We set N = {1, 2, . . . } and N0 = N∪{0}. Let a and b such that −∞ ≤ a < b ≤ ∞.
In this paper we consider the notation

I(a, b) =







































[a, b], if a, b ∈ R

(−∞, b], if a = −∞, b ∈ R

[a,∞) , if a ∈ R, b = ∞

(−∞,∞) = R, if a = −∞, b = ∞ .

(1.1)

Let n ∈ N. The kernel Wn : I(a, b) × I(a, b) → R satisfies

Wn(x, t) ≥ 0 (1.2)

for any (x, t) ∈ I(a, b) × I(a, b),

b
∫

a

Wn(x, t)dt = 1 (1.3)

for any x ∈ I(a, b) and

∂

∂x
Wn(x, t) =

n(t− x)

p(x)
Wn(x, t) (1.4)

for any (x, t) ∈ I(a, b) × I(a, b), where p(x) is polynomial in x and p(x) is strictly
positive for any x ∈ I(a, b).
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We define the operators Sn : F(p) → C(R), for any function f ∈ F(p) by

(Snf)(x) =

b
∫

a

Wn(x, t)f(t)dt (1.5)

for any x ∈ I(a, b), where F(p) =
{

f : I(a, b) → R|
b
∫

a

Wn(x, t)f(t)dt <∞ for any

x ∈ I(a, b) and for any n ∈ N
}

.
The operators (Sn)n≥1 are introduced and are studied by C. P. May in the paper

[8]. These operators are referred to us like exponential operators.
Let n,m ∈ N0, n 6= 0. The m-th centered order moment is defined by

An,m(x) = nm

b
∫

a

Wn(x, t)(t− x)mdt (1.6)

for any x ∈ I(a, b).
The results contained in the following lemmas are well known (see [1] or [17]).

Lemma 1.1. We have that
An,0(x) = 1, (1.7)

An,1(x) = 0 (1.8)

and
An,2(x) = np (x) (1.9)

for any x ∈ I(a, b) and for any n ∈ N.

Lemma 1.2. Let n,m ∈ N0, n 6= 0 and x ∈ I(a, b). Then the m-th centered order

moment An,m(x) is a

[

m

2

]

degree polynomial in n.

Consequence 1.1. For any m ∈ N0 and for any x ∈ I(a, b), it results that exists

lim
n→∞

An,m(x)

n[ m

2 ]

and

lim
n→∞

An,m(x)

n[ m

2 ]
= lm(x) ∈ R. (1.10)

Proof. It results from Lemma 1.2. �

Lemma 1.3. For any m,n ∈ N0, n 6= 0, the relation

An,m+1(x) = mnp (x)An,m−1(x) + p (x)
d

dx
An,m(x) (1.11)

holds for any x ∈ I(a, b).

Consequence 1.2. We have that

An,3(x) = np′(x)p (x) (1.12)

and
An,4(x) = 3n2p2(x) + np′′(x)p2(x) + n[p′(x)]2p (x), (1.13)

for any x ∈ I(a, b) and for any n ∈ N.
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Proof. It results from Lemma 1.3 and Lemma 1.1. �

Lemma 1.4. Let n,m ∈ N0, n 6= 0 and x ∈ I(a, b). Then the m-th centered order
moment An,m(x) is a polynomial in n.

Consequence 1.3. Let n ∈ N and x ∈ I(a, b). Then

An,m(x) = n[ m

2 ]pm(x) + qn,m(x) (1.14)

for any m ∈ N0, where pm(x) is a polynomial in x and the degree of qn,m(x) poly-

nomial in n is strictly smaller than

[

m

2

]

.

Proof. By induction from m, taking into account by Lemma 1.2, Lemma 1.3 and
Lemma 1.4. �

Consequence 1.4. For any m ∈ N0 and any compact set K, K ⊂ I(a, b), there exits
km(K) ∈ R depending on K and m, there exists nm ∈ N depending on m such that

An,m(x)

n[ m

2 ]
≤ km(K) (1.15)

for any n ∈ N, n ≥ nm and for any x ∈ K.

Proof. From Consequence 1.1 and Consequence 1.3 it results that lm(x) is a poly-

nomial in x. Then there exists nm ∈ N such that
An,m(x)

n[ m

2 ]
< lm(x)+1 for any n ∈ N,

n ≥ nm and becauseK is a compact set and nothing sup
x∈K

[lm(x) + 1] = km(K), then

(1.15) holds. �

2. PRELIMINARIES

In this section, we recall some notions and results which we will use in this
article.

Let n ∈ N and Bn : C([0, 1]) → C([0, 1]) the Bernstein operators, defined for any
function f ∈ C([0, 1]) by

(Bnf)(x) =
n

∑

k=0

pn,k(x)f

(

k

n

)

, (2.1)

where pn,k(x) are the fundamental polynomials of Bernstein, defined as follows

pn,k(x) =

(

n

k

)

xk(1 − x)n−k, (2.2)

for any x ∈ [0, 1] and any k ∈ {0, 1, . . . , n}.
Let n ∈ N and the operators Sn : C2([0,∞)) → C([0,∞)) defined for any func-

tion f ∈ C2([0,∞)) by

(Snf)(x) = e−nx

∞
∑

k=0

(nx)k

k!
f

(

k

n

)

(2.3)
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for any x ∈ [0,∞), where C2([0,∞)) =
{

f ∈ C([0,∞)) : lim
x→∞

f(x)

1 + x2
exists and

is finite
}

. The operators (Sn)n≥1 are named Mirakjan-Favard-Szász operators,

introduced in 1941 by G. M. Mirakjan in the paper [11].
These operators are intensive studied by J. Favard in 1944 in the paper [4] and

O. Szász in 1950 in the paper [18].
Let n ∈ N and the operators Vn : C2([0,∞)) → C([0,∞)) defined for any func-

tion f ∈ C2([0,∞)) by

(Vnf)(x) = (1 + x)−n

∞
∑

k=0

(

n+ k − 1

k

) (

x

1 + x

)k

f

(

k

n

)

(2.4)

for any x ∈ [0,∞).
The operators (Vn)n≥1 are named Baskakov operators, introduced in 1957 by V.

A. Baskakov in the paper [2].
In the paper [5], M. Ismail and C. P. May consider the operators (Rn)n≥1.
For n ∈ N, Rn : C([0,∞)) → C([0,∞)) is defined for any function

f ∈ C([0,∞)) by

(Rnf)(x) = e−
nx

1+x

∞
∑

k=0

n(n+ k)k−1

k!

(

x

1 + x

)k

e−
kx

1+x f

(

k

n

)

, (2.5)

for any x ∈ [0,∞).
We consider I ⊂ R, I an interval and we shall use the function sets: B(I) =

{f |f : I → R, f bounded on I}, C(I) = {f |f : I → R, f continuous on I} and
CB(I) = B(I) ∩ C(I). For any x ∈ I , let the function ψx : I → R, ψx(t) = t− x, for
any t ∈ I .

If I ⊂ R is a given interval and f ∈ B(I), then the first order modulus of
smoothness of f is the function ω1 : [0,∞) → R defined for any δ ≥ 0 by

ω1(f ; δ) = sup {|f(x′) − f(x′′)| : x′, x′ ∈ I, |x′ − x′′| ≤ δ} . (2.6)

Theorem 2.1. Let I ⊂ R be an interval, a ∈ I , n ∈ N and the function f : I → R, f is
n times derivable in a. According to Taylor’s expansion theorem for the function f around
a, we have

f(x) =

n
∑

k=0

(x− a)k

k!
f (k)(a) + (x− a)nµ(x− a) (2.7)

where µ is a bounded function and lim
x→a

µ(x− a) = 0.

If f (n) is a continuous function on I , then for any δ > 0

|µ(x− a)| ≤ 1

n!

[

1 + δ−2(x− a)2
]

ω1

(

f (n); δ
)

(2.8)

for any x ∈ I .

Proof. For the proof see [15]. �
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3. MAIN RESULTS

In the following, let s be a fixed natural number, s even.

Theorem 3.2. Let f : I(a, b) → R be a function, f ∈ F(p).

a) If x ∈ I(a, b), f is a s times derivable function in x and the function f (s) is contin-
uous in x, then

lim
n→∞

n
s

2

[

(Snf)(x) −
s

∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

= 0. (3.1)

b) If f is a s times derivable function on I(a, b), the function f (s) is continuous on
I(a, b), K is a compact set, K ⊂ I(a, b), then the convergence given in (3.1) is uniform
on K and there exists ks(K), ks+2(K) ∈ R, there exists ns ∈ N such that

n
s

2

∣

∣

∣

∣

∣

(Snf)(x) −
s

∑

i=0

1

nii!
An,i(x)f

(i)(x)

∣

∣

∣

∣

∣

≤ (3.2)

≤ 1

s!
[ks(K) + ks+2(K)]ω1

(

f (s);
1√
n

)

for any x ∈ K and for any n ∈ N, n ≥ ns.

Proof. a) According to Taylor’s theorem applied for the function f in the point x,
we have

f(t) =
s

∑

i=0

(t− x)i

i!
f (i)(x) + (t− x)sµ(t− x) (3.3)

for any t∈I(a, b), where µ is a bounded function and lim
t→x

µ(t−x)=0.

In (3.3) multiplying by Wn(x, t) and integrating on I(a, b), we obtain

(Snf)(x) =

s
∑

i=0

f (i)(x)

i!

b
∫

a

Wn(x, t)(t− x)idt+

b
∫

a

Wn(x, t)(t− x)sµ(t− x)dt.

Taking into account of the definition from the centered moment of m order, the
relation above becomes

(Snf)(x) =

s
∑

i=0

1

nii!
An,i(x)f

(i)(x) +

b
∫

a

Wn(x, t)(t− x)sµ(t− x)dt,

so

n
s

2

[

(Snf)(x) −
s

∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

= (Rnf)(x), (3.4)

where

(Rnf)(x) = n
s

2

b
∫

a

Wn(x, t)(t− x)sµ(t− x)dt, (3.5)

for any n ∈ N.
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Then

|(Rnf)(x)| ≤ n
s

2

b
∫

a

Wn(x, t)(t− x)s |µ(t− x)| dt

and taking Theorem 2.1 into account, for any δ > 0 we have

|(Rnf)(x)| ≤ n
s

2

b
∫

a

Wn(x, t)(t− x)s 1

s!

[

1 + δ−2(t− x)2
]

ω1

(

f (s); δ
)

dt =

=
1

s!
n

s

2

[

b
∫

a

Wn(x, t)(t− x)sdt+ δ−2

b
∫

a

Wn(x, t)(t− x)s+2dt

]

ω1

(

f (s); δ
)

.

Taking into account of the definition from the centered moment of m order, the
relation above becomes

|(Rnf)(x)| ≤ 1

s!

[

An,s(x)

n
s

2
+ δ−2An,s+2(x)

n
s

2+2

]

ω1

(

f (s); δ
)

,

and considering δ =
1√
n

, we obtain

|(Rnf)(x)| ≤ 1

s!

[

An,s(x)

n
s

2
+
An,s+2(x)

n
s+2
2

]

ω1

(

f (s);
1√
n

)

, (3.6)

for any n ∈ N.

Taking Consequence 1.1 into account and considering the fact that

lim
n→∞

ω1

(

f (s);
1√
n

)

= ω1

(

f (s); 0
)

= 0,

we have that

lim
n→∞

(Rnf)(x) = 0. (3.7)

From (3.4) and (3.7), (3.1) follows.
b) Taking into account the relations (3.4), (3.6) and Consequence 1.4, it results

that the relation (3.2) holds, from which it results that the convergence from (3.1)
is uniform on K. �

Theorem 3.3. Let f : I(a, b) → R be a function, f ∈ F(p).

a) If x ∈ I(a, b), f is a s times derivable function in x and the function f (s) is contin-
uous in x, then

lim
n→∞

[(Snf)(x) − f(x)] = 0 (3.8)

if s = 0,

lim
n→∞

n
s

2

[

(Snf)(x) −
s−1
∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

=
f (s)(x)

s!
ls(x) (3.9)
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and

lim
n→∞

n
s

2

[

(Snf)(x) −
s−2
∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

= (3.10)

=
f (s−1)(x)

(s− 1)!
ls−1(x) +

f (s)(x)

s!
ls(x)

if s ≥ 2, where ls−1(x) and ls(x) are defined in (1.10). b) If f is a s times derivable

function on I(a, b), the function f (s) is continuous on I(a, b) and K is a compact set,
K ⊂ I(a, b), then the convergence from (3.8) − (3.10) are uniform on K.

Proof. It results from Theorem 3.1 and Consequence 1.1. �

Theorem 3.4. Let f : I(a, b) → R be a function, f ∈ F(p).

a) If x ∈ I(a, b), f is a s times derivable in x and the function f (s) is continuous in x,
then

lim
n→∞

[(Snf)(x) − f(x)] = 0 (3.11)

if s = 0,

lim
n→∞

n [(Snf)(x) − f(x)] =
p(x)

2
f ′′(x) (3.12)

if s = 2 and

lim
n→∞

n2

[

(Snf)(x) − f(x) − p(x)

2n
f ′′(x)

]

= (3.13)

=
p′(x)p(x)

6
f ′′′(x) +

p2(x)

8
f (IV )(x)

if s = 4.

b) If f is a s times derivable function on I(a, b), the function f (s) is continuous on
I(a, b) and K is a compact set, K ⊂ I(a, b), then the convergence from (3.11) − (3.13)
are uniform on K.

Proof. It results from Theorem 3.2, Lemma 1.1, Lemma 1.2, Consequence 1.1, Con-
sequence 1.2 and Consequence 1.4. �

In the following, by particularization and applying Theorem 3.2 or Theorem
3.3, we give Voronovskaja’s type theorem for some known operators, for example
the Bernstein operators, the Mirakjan-Favard-Szász operators, the Baskakov oper-
ators, the (Rn)n≥1 operators, the Post Widder operators and the Gauss-Weierstrass
operators. These operators are exponential operators (see [1], [9] or [17]).

Application 3.1. If a = 0, b = 1 and p(x) = x(1 − x), x ∈ [0, 1], we obtain the
Bernstein operators. Because C([0, 1]) ⊂ F(p), Theorem 3.2 and Theorem 3.3 hold
for any function f ∈ C([0, 1]).

In 1932, E. Voronovskaja gave the relation (3.12) in the paper [19]. In the same
year, S. Bernstein gave the relation (3.13) in the paper [3].
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Application 3.2. If a = 0, b = ∞ and p(x) = x, x ∈ [0,∞), we obtain the Mirakjan-
Favard-Szász operators. Theorem 3.2 and Theorem 3.3 hold for C2([0,∞)) ∩ F(p)
set functions.

Application 3.3. If a = 0, b = ∞ and p(x) = x(1 + x), x ∈ [0,∞), we obtain the
Baskakov operators. Theorem 3.2 and Theorem 3.3 hold for C2([0,∞)) ∩ F(p) set
functions.

Application 3.4. If a = 0, b = ∞ and p(x) = x(1 + x)2, x ∈ [0,∞), we obtain the
defined operator in (2.5). Theorem 3.2 and Theorem 3.3 hold for C([0,∞)) ∩ F(p).

Application 3.5. If a = 0, b = ∞ and p(x) = x2, x ∈ [0,∞), we obtain the Post-
Widder operators (S1,n)n≥1, defined by

(S1,nf)(x) =
1

(n− 1)!

(n

x

)n
∞
∫

0

e−
nt

x tn−1f(t)dt (3.14)

for any f ∈ C([0,∞)), any x ∈ [0,∞) and any n ∈ N. Theorem 3.2 and Theorem
3.3 hold for C([0,∞)) ∩ F(p) set function.

Application 3.6. If a = −∞, b = ∞ and p(x) = 1, x ∈ R, we obtain the Gauss-
Weierstrass operators (S2,n)n≥1, defined by

(S2,nf)(x) =

√

n

2π

∫

R

e−
n(x−t)2

2 f(t)dt (3.15)

for any f ∈ C(R), any x ∈ R and any n ∈ N. Theorem 3.2 and Theorem 3.3 hold
for C(R) ∩ F(p) set function.

Observation 3.1. We ask our selves if a relation of the same type as the one in
Theorem 3.1 takes place for odd number s. The answer is negative. Considering
in the following an function f : I(a, b) → R, f ∈ F(p), f is not a polynomial
function with the degree that is mostly equal to 3, x ∈ I(a, b) arbitrary, f is a s

times derivable function in x and the function f (s) is continuous in x. Assuming
the contrary, then for s = 3, there exists α3 ∈ R such that

lim
n→∞

nα3

[

(Snf)(x) −
3

∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

= 0. (3.16)

From Theorem 3.2 for s = 4, we have

lim
n→∞

n2

[

(Snf)(x) −
3

∑

i=0

1

nii!
An,i(x)f

(i)(x)

]

=
p2(x)

8
f (IV )(x). (3.17)

From (3.16) and (3.17), we obtain a contradiction, because p(x) is strictly positive
for x ∈ I(a, b) and f is not a polynomial function with the degree that is mostly
equal to 3.
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Anal. Num. Théor. Approx., 34 (2005), No. 1, 79-91
[17] Stancu D. D., Coman Gh., Agratini O. and Trâmbiţaş R., Analiză numerică şi teoria aproximării, I,
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