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A direct finding of the supremum of sequences
explained by a fixed point theorem and some new
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ABSTRACT. We present an explanation by a fixed point theorem of a situation in the theory of the
sequences. Some additional facts are given.

1. INTRODUCTION

The theory of the fixed point has important classical and old applications espe-
cially in Analysis. It would be naive to try to make here a complete list of these
applications. Then we will cite only some of these. So, the theorem of Knaster
permits a definition of the root of order n of a real, positive number (see [4]). The
Banach’s contraction principle (also called of Banach-Caccioppoli) based the Pi-
card iteration, gives the solution in the theory of the implicit functions, for the ini-
tial value problem for ordinary differential equations, for some integral equations
and some integro-differential equations by using the Picard iteration (see [4], [5]).
Recently Professor I. A. Rus and some of his collaborators has obtained in [6], [7],
[1], [2], a series of results concerning the iterates of the approximation operators of
Bernstein and Stancu type, via Picard iteration and the contraction principle.

In this work we intend to explain a particular situation on the real axis, namely
of the theory of the sequences of real numbers, using the fixed point theory.

2. POSING THE PROBLEM

Let (an)n∈N be an increasing sequence of real numbers and let
A = {an | n ∈ N}. By a well-known theorem, if (an)n has an upper bound,
it is convergent and lim

n→∞
an = sup A.

Usually, when we study if a sequence has an upper bound, we obviously do not
search for supA; so we can consider some classical examples as the following:

an =

(

1 +
1

n

)

n

< 3 (when supA = e = 2, 71828 . . ., the famous constant of

Napier)

an =
1

n + 1
+

1

n + 2
+ . . . +

1

2n
< 1 (when supA = ln 2 = 0, 69314 . . .)

an =
1

12
+

1

22
+ . . . +

1

n2
< 2 (when supA =

π2

6
= 1, 64493 . . .)
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an = 1+
1

2
+ . . .+

1

n
− ln(n+1) < 1 (when supA = γ = 0, 57721 . . ., the constant

of Euler, also called the constant of Euler-Mascheroni).
But there exist certain sequences for which, searching for a majorant, we obtain

directly supA.
A typical example is the following: consider the sequence (an)n defined by the

equalities a1 =
√

α and an+1 =
√

α + an, for n ≥ 1, where α ≥ 0 is a given constant.
The sequence is strictly increasing and the majorant is exactly (1 +

√
1 + 4α)/2.

3. THE MAIN RESULT

The above situation represents a particular case of a theorem which we will
present now. These situations are generally known; we present here a precise form
(which also admits a dual form).

Theorem 1. Let I be an interval of R and let f : I → I be a function which has the
following properties:

(i) f is strictly increasing; (ii) f has a fixed point x∗ ∈ I ; (iii) x < f(x), for any
x ∈ I , x < x∗.

Then we have:
(a) the point x∗ is the unique fixed point of the function f on the interval I ∩ (−∞, x∗];
(b) f is left continuous at x∗;
(c) the sequence (an)n defined by the recurrence relation an+1 = f(an), n = 1, 2, 3, . . .,

with a1 ∈ I ∩ (−∞, x∗) given, has the following properties:
(α) it is strictly increasing;
(β) it is upper-bounded by x∗ (therefore (an)n is convergent);
(γ) lim

n→∞
an = x∗ (therefore x∗ = supA).

(So, under the assumptions above, we obtain à priori that an upper bound for the
sequence (an)n is supA).

Proof.

(a) Suppose, ab absurdum, that the
function f has also another fixed point
x∗∗ ∈ I ∩ (−∞, x∗], x∗∗ 6= x∗ i.e. x∗∗ =
f(x∗∗). So, we have x∗∗ < x∗. But, from
the hypothesis (iii) it results x∗∗ < f(x∗∗)
that is a contradiction. Therefore the fixed
point x∗ is unique.

(b) Let (xn)n be an arbitrary se-
quence of real numbers in I ∩ (−∞, x∗),

which tends to x∗: lim
n→∞

xn = x∗.

So, from (iii), we have:

xn < f(xn). (1)

By the other hand, from the inequality xn < x∗, it results f(xn) < f(x∗),
i. e. (x∗ being a fixed point):

f(xn) < x∗. (2)



72 Andrei Vernescu

Therefore, we have:

xn < f(xn) < x∗. (3)

The sequence (xn)n from the left part converges to x∗, so we obtain for n → ∞:

lim
n→∞

(xnրx
∗)

f(xn) = x∗.

But x∗ is a fixed point of f , therefore the last relation becomes:

lim
n→∞

(xnրx∗)

f(xn) = f(x∗).

Therefore f is left-continuous at x∗.
(c) (α) We have, from (iii), a1 < f(a1) = a2, i. e. a1 < a2. Suppose now that, for

a certain n, we have an < an+1. Because of the fact that f is strictly increasing, it
results f(an) < f(an+1), that is an+1 < an+2. So, it follows by induction, that the
sequence (an)n is strictly increasing.

(β) We have a1 < x∗. Suppose now that, for a certain n, we have an < x∗. It
results f(an) < f(x∗), that is an+1 < x∗. So, we get by induction, that an < x∗ for
any n ∈ N.

(γ) Let l = lim
n→∞

an. It results that we have also lim
n→∞

an+1 = l. From the inequal-

ity an < x∗, for any n ∈ N, it results l ≤ x∗.
The sequence (an)n was defined by the recurrence relation an+1 = f(an). Pass-

ing to the limit for n → ∞, we obtain:

lim
n→∞

an+1 = lim
n→∞

(anրx
∗)

f(an).

But f is left-continuous at the point x∗, therefore f commutes with the left limit
and the last equality gives us:

lim
n→∞

an+1 = f

(

lim
n→∞

(anրx
∗)

an

)

.

i. e.

l = f(l),

where l ∈ I ∩ (−∞, x∗], which means that l is a fixed point of the function f on the
interval I ∩ (−∞, x∗]. But f has an unique fixed point in this interval, namely x∗.
It results that l = x∗. �

So, this fixed point theorem gives us an explanation of the fact mentioned in
Section 2, regarding the recurrent sequence defined by the equalities a1 =

√
α,

an+1 =
√

α + an, where α ≥ 0. As we have spoken, the a priori upper bound is
just the fixed point of the associated function

f : [0,∞) → [0,∞), f(x) =
√

α + x.

Many other similar examples can be considered, e. g. the sequence defined by
the equalities:

an+1 = 3

√

(a3
n

+ 3an + 4)/2, a1 = 1.

The scheme is completely similar (see Figure 2).
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The limit has a more ,,complicated“ form being a so called cubic irrational num-

ber, namely x∗ = supA =
3

√

2 +
√

3 +
3

√

2 −
√

3, which is the fixed point of f . It is
the unique real root of the equation f(x) = x, which becomes x3 − 3x− 4 = 0 (this
gives us the form of cubic irrational number of x∗).

This is an a priori upper bound for (an)n, given by supA.
A more elementary and detailed exposition of this subject is given in our previ-

ous work [8].

Fig. 2

4. THE DUAL THEOREM

Of course, a similar situation is valid for the dual relation in which an a priori
lower bound of (an)n is directly obtained as inf A. We have the following

Theorem 2. Let I be an interval of R and let f : I → I be a function which has the
following properties:

(i) f is strictly increasing;
(ii) f has a fixed point x∗ ∈ I ;
(iii) f(x) < x, for any x ∈ I , x > x∗.
Then we have:
(a) the point x∗ is the unique fixed point of the function f on the interval I ∩ [x∗,∞);
(b) f is right continuous at x∗;
(c) the sequence (an)n defined by the recurrence relation an+1 = f(an), n = 1, 2, 3, . . .

with a1 ∈ I ∩ (x∗,∞) given, has the following properties:
(α) it is strictly decreasing;
(β) it is lower bounded by x∗ (therefore (an)n is convergent);
(γ) lim

n→∞
an = x∗ (therefore x∗ = inf A).

(So, under the assumption above, we obtain a priori that an upper bound for the
sequence (an)n is inf A.)

5. ORDER OF CONVERGENCE

Consider again the sequence defined by the equations a1 =
√

α and an+1 =√
α + an, n = 1, 2, 3, . . ., where α ≥ 0 is a given number, let α ≥ 1. The limit of
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this sequence was obtained by an iteration of Picard-Banach type, an+1 = f(an),
related to the function f : [0,∞) → [0,∞), f(x) =

√
α + x. Because of the relation:

f ′(x) =
1

2
√

α + x
≤ 1

2
√

α
<

1

2
,

the function f is a contraction of constant k = 1/2. But the Banach contraction
principle assures us that if f is a k-contraction of a complete metric space (X; d),
x1 ∈ X is given, xn+1 = f(xn), then f has an unique fixed point, namely x =
lim

n→∞
xn and we have:

d(xn;x) ≤ kn−1

1 − k
d(x1, x2).

In our case, this result becomes:

|an − l| ≤ 1

2n−2

(

√

α +
√

α −
√

α

)

.

If α = 1, then (an)n is the sequence of general term

an =

√

1 +

√

1 + . . . +
√

1

(with n square roots), which converges to the ”golden number“ ϕ = (1 +
√

5)
/

2.
So we obtain:

|an − ϕ| <
1

2n−2
(
√

2 − 1).
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