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The study of some nonlinear dynamical systems
modelled by a more general Rayleigh-Van Der Pol
equation

MIRCEA LUPU and FLORIN ISAIA

ABSTRACT. In this paper, we study the mathematical model for nonlinear dynamical systems with
distributed parameters given by a generalized Rayleigh-Van der Pol equation. In the autonomous case
and in the non-autonomous case, conditions of stability, bifurcations, self-oscillations are studied using
criteria of Liapunov, Bendixon, Hopf [11], [12]. Asymptotic and numerical methods are often used [5].
The equation has the form

ẍ + ω2x =
(

α − βx2 − γẋ2
)

ẋ + f (t) ,

where resonance and limit cycles can be remarked [1]. Note that for β = 0, α 6= 0, γ 6= 0 we have
the Rayleigh equation [1], while for γ = 0, α 6= 0, β 6= 0 we have the Van der Pol equation [2],[3].
Besides the theoretical study, the applications to techniques are very important: dynamical systems in
the mechanics of vibrations, oscillations in electromagnetism and transistorized circuits [6], the aerody-
namics of the flutter with two degrees of freedom [8], are modelled by this hybrid equation proposed
by authors.

1. INTRODUCTION

In this paper we will study nonlinear equations of the type

ẍ + f (x, ẋ) ẋ + g (x) = F (t) , (1.1)

where, if f (x, ẋ) is a polynomial, an equation of Rayleigh-Van der Pol (RVP) form
can be obtained

mẍ + cẋ + kx =
(

A − Bx2
)

ẋ − Cẋ3 + Dsinνt, (1.2)

ẍ + ω2x =
(

α − βx2 − γẋ2
)

ẋ + f (t) . (1.2’)

Thus, for β = 0, α 6= 0, γ 6= 0 we have equations of Rayleigh type [1], while for
γ = 0, α 6= 0, β 6= 0 we have equations of Van der Pol type [2], [3]. They rep-
resent mathematical models for phenomena in mechanic vibrations, fluid oscilla-
tions [5], electrical transistorized circuits, generating lamps [11], flutter oscillations
in aerodynamics [8], dampers with friction [10], astronomical phenomena, etc. The
forces f (t) can be harmonic (non-autonomous case for f 6= 0, autonomous case for
f = 0).

Some studies on the stability of solutions, on the bifurcations and on the reso-
nance can be made directly, using the distributed parameters α, β, γ, ω or using
small parameter methods, asymptotic methods, numeric methods. Here is a tech-
nique to specify a small parameter µ on equation (1.2): dividing by m, denoting

Received: 10.09.2006. In revised form: 19.12.2006
2000 Mathematics Subject Classification. 34C15, 37B55, 37C75, 37G15.
Key words and phrases. Nonlinear dynamical systems, self-oscillations, stability, bifurcation, limit cycle.

81



82 Mircea Lupu and Florin Isaia

c/m = 2n, k/m = ω2, 2n/ν = µ,
(

ω2 − ν2
)

/ν2 = µχ and making the change of

variable τ = νt, we have ẋ = x′ (t) ν, ẍ = x′′ (t) ν2 and equation (1.2) becomes

x′′ + x = µ
[

−χx +
(

α − βx2
)

x′ − γx′3 + f0 sin τ
]

. (1.3)

For equation (1.2’) in the autonomous case (f = 0), we can consider τ = ωt, ẋ =
x′ (t) ω, ẍ = x′′ (t) ω2, ν = α/ω, ε = β/α, δ = αγ/ν2 and equation (1.2’) becomes

x′′ + x = µx′

(

1 − εx2 − δx′2
)

. (1.4)

In the autonomous case and in the non-autonomous case, we will study the
stability of solutions, bifurcations, self-oscillations and resonance.

2. THE STUDY OF THE (RVP) EQUATION IN THE AUTONOMOUS CASE

In the phase space (x, y), equation (1.2’) with f = 0 becomes

ẋ = y, ẏ = −ω2x +
(

α − βx2 − γy2
)

y, (2.5)

and is a special case of the systems

ẋ = P (x, y) , ẏ = Q (x, y) . (2.6)

The equilibrium points are the solutions of the algebraic system with unknowns
(x, y) [4]

P (x, y) = 0, Q (x, y) = 0.

We will study the stability of the equilibrium point O∗ (x∗ = 0, y∗ = 0). The system
(2.5) being nonlinear, we consider the linear system in first approximation corre-
sponding to (2.5)

ẋ = y, ẏ = −ω2x + αy, (2.7)

and we will study this system in a neighbourhood of O∗ (0, 0). The characteristic
equation is

∣

∣

∣

∣

∣

∂P
∂x (x∗, y∗) − r ∂P

∂y (x∗, y∗)
∂Q
∂x (x∗, y∗) ∂Q

∂y (x∗, y∗) − r

∣

∣

∣

∣

∣

= 0 ⇔ r2 − αr + ω2 = 0, (2.8)

with the corresponding roots

r1,2 =
α ±

√
α2 − 4ω2

2
.

If α < 0, then O∗ is an asymptotic stable point for the linear system (2.7) as for
the nonlinear system (2.5). In fact, for α ∈ (−∞,−2ω], O∗ is an asymptotic stable
node and for α ∈ (−2ω, 0), O∗ is an asymptotic stable focus [2], [4].

If α > 0, then O∗ is an unstable point for the linear system (2.7) as for the non-
linear system (2.5), the trajectories leaving O∗ when t → ∞. Using some theorems
of Liapunov and Bendixon type, we will show the existence of a stable or unsta-
ble Hopf bifurcation in the neighbourhood of α = α0 = 0 and we will specify the
limit cycle for the trajectories of system (2.5). In order to verify the non-existence of
periodic trajectories which can be limit cycles, we will use the Bendixon criterion
[1], [11]: The system (2.6) has a periodic solution only if the expression ∂P/∂x + ∂Q/∂y
changes its sign or takes zero value. Here, ∂P/∂x + ∂Q/∂y = α − βx2 − 3γy2. There-
fore, for α > 0, O∗ is an unstable point, but a closed curve which intersects the
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ellipse of equation βx2 +3γy2−α = 0 can exists. If this curve is a stable limit cycle,
then it contains the unstable point O∗. In this case, we have a Hopf bifurcation [6]:
If the characteristic polynomial (2.8) has complex roots of the type r1,2 = Λ(α) ± iΩ(α),
with Λ (α0) = 0, Λ (α) < 0 for α < α0, Λ (α) > 0 for α > α0, (∂Λ/∂α) |α=α0

> 0 and
Ω(α0) = Ω0 6= 0, then for α > α0 sufficiently small, the system (2.6) admits a periodic

solution. Here, α0 = 0, Λ (α) = α/2, Ω(α) =
√

4ω2 − α2/2 and hence, for α > 0 the
system (2.5) admits a periodic solution which is a limit cycle.

In order to specify the stability of the limit cycle, we will use the complex form
of system (2.5). We have z = x + iy, z̄ = x − iy, ẋ = ẋ + iẏ. By adding the two
equations of (2.5) we obtain

ż = A (α) z + B (α) z̄ + g (z, z̄) ,

where g (z, z̄) contains monomials of degrees 2 and 3 in (z, z̄) [6], [8]

g (z, z̄) =
g20

2
z2 + g11zz̄ +

g02

2
z̄2 +

g21

2
z2z̄ +

g12

2
zz̄2 +

g30

6
z3 +

g03

6
z̄3 + O

(

|z|4
)

.

Define the first Liapunov coefficient to be the real number

l1 (α0) =
Re c1 (α0)

Ω0

, with c1 (α0) =
i

2Ω0

(

g20g11 − 2 |g11|2 −
1

3
|g02|2

)

+
g21

2
.

It is also known that sgn l1 (α0) = sgn Re (ig20g11 + Ω0g21). Now, we state the
topological Hopf criterion:

- if l1 (α0) < 0, then the periodic solution is a stable limit cycle with supercritical
Hopf bifurcation;

- if l1 (α0) > 0, then the periodic solution is an unstable limit cycle with subcritical
Hopf bifurcation.

In the case of system (2.5), we have the complex form

ż =
α − i

(

1 + ω2
)

2
z − α + i

(

1 + ω2
)

2
z̄

+
γ − β

8
z3 − 3γ + β

8
z2z̄ +

3γ + β

8
zz̄2 − γ − β

8
z̄3,

with g21

2
= − 3γ+β

8
. For α > 0, we have sgn l1 (α0) = sgn Re

(

−Ω0
3γ+β

4

)

= −1.

Therefore, the periodic solution is a stable limit cycle which contains the unstable
point O∗.

The same conclusions can be derived by applying the variation of constants
method (Van der Pol). We start from the equation

x′′ + x = µx′

(

1 − εx2 − δx′2
)

(1.4)

which is obtained from (1.2’) by using the following transformations (see Section
1): τ = ωt, ẋ = x′ (τ) ω, ẍ = x′′ (τ) ω2, µ = α/ω, ε = β/α, δ = αγ/µ2. Here, µ is
a small parameter. For µ = 0 (α = 0) we have the solution x = a cos τ + b sin τ ,
a, b ∈ R. In the following, we will consider that a = a (τ), b = b (τ) are parameters
with slow variation and by using the variation of constants method, we have

a′ cos τ + b′ sin τ = 0, (2.9)

x′ = −a sin τ + b cos τ, x′′ = −a′ sin τ + b′ cos τ − a cos τ − b sin τ. (2.10)
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By replacing x, x′, x′′ in equation (1.4) and denoting f (x, x′) = x′
(

1 − εx2

−δx′2
)

, we get

a′ sin τ + b′ cos τ = µf (a cos τ + b sin τ,−a sin τ + b cos τ) . (2.11)

The solution of system (2.9), (2.11) with unknowns (a′, b′) is

−a′ = −µf · sin τ, b′ = µf · cos τ. (2.12)

By averaging (2.12) with respect to the period T = 2π, we obtain
{

a′ = − µ
2π

∫ 2π

0
f (a cos τ + b sin τ,−a sin τ + b cos τ) sin τdτ,

b′ = µ
2π

∫ 2π

0
f (a cos τ + b sin τ,−a sin τ + b cos τ) cos τdτ.

Here, we prefer a different variant of the variation of constants method. We con-
sider the polar coordinates

a = A cos θ, b = A sin θ, (2.13)

where A = A (τ), θ = θ (τ) have a slow variation and we get

a′ = A′ cos θ − Aθ′ sin θ, b′ = A′ sin θ + Aθ′ cos θ. (2.14)

Therefore, the solution (x, y) with y = ẋ becomes

x = A cos (τ − θ) , y = ẋ = −Aω sin (τ − θ) . (2.15)

We have
A′ cos (τ − θ) + Aθ′ sin (τ − θ) = 0, (2.16)

{

x′ = −A sin (τ − θ) ,
x′′ = −A′ sin (τ − θ) − A cos (τ − θ) + Aθ′ cos (τ − θ) .

(2.17)

Replacing (2.15), (2.17) in equation (1.4) we get

−A′ sin (τ − θ) + Aθ′ cos (τ − θ) = −µA sin (τ − θ) (2.18)

·
[

1 − εA2 cos2 (τ − θ) − δA2 sin2 (τ − θ)
]

.

Now, we solve the system (2.16), (2.18) with unknowns (A′, θ′), we average the
results with respect to T = 2π and then we perform the change of variable ϕ =
τ − θ = ωt − θ. We obtain

{

A′ = µ
2π

∫ 2π

0
A

(

1 − εA2 cos2 ϕ − δA2 sin2 ϕ
)

sin2 ϕdϕ,

θ′ = − µ
2π

∫ 2π

0

(

1 − εA2 cos2 ϕ − δA2 sin2 ϕ
)

sin2 ϕdϕ.
(2.19)

Taking account of Ȧ = A′ω, θ̇ = θ′ω, relations (2.19) become
{

Ȧ = µω
2π

∫ 2π

0
A

(

1 − εA2 cos2 ϕ − δA2 sin2 ϕ
)

sin2 ϕdϕ = µω
2π Φ(A) ,

θ̇ = −µω
2π

∫ 2π

0

(

1 − εA2 cos2 ϕ − δA2 sin2 ϕ
)

sin2 ϕdϕ = −µω
2π Ψ(A) .

(2.20)

The differential system (2.20) and the initial conditions A (t0 = 0) = A0, θ (t0 = 0)
= θ0 allow us to find the amplitude A (t) and the phase difference θ (t). Because
A (t) and θ (t) have a slow variation, the algebraic system Φ(A) = 0, Ψ(A) = 0
allows us to find the critical points A = A∗ = const. We have

θ = 0, A =
A∗

√
1 − Ce−µωt

, with A∗ =
2√

ε + 3δ
, C = 1 −

(

A∗

A0

)2

. (2.21)
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Consequently, from (2.15) and (2.21) we have the solution

x = A (t) cos ωt, y = −A (t)ω sinωt, (2.22)

with A (t) given by (2.21). Relation (2.21) shows us that in the case α > 0 (µ > 0)
and β > γ > 0, the trajectories are spiral lines which tend (when t → ∞) to the

stable limit cycle represented by the ellipse of equation x2 + y2/ω2 = A∗2.

Remark 2.1. If γ = 0, α 6= 0, β 6= 0, we obtain the special Van der Pol case studied
by us in [9]. If β = 0, α 6= 0, γ 6= 0, we obtain the special Rayleigh case studied
by us in [8] for the aerodynamics of the flutter with two degrees of freedom. It is
worth to point out the studies made by N. Mureşan, N. Vornicescu, and N. Lungu
[7] concerning the boundness of solutions and the calculus of Liapunov functions
for these types of nonlinear equations.

SELF-OSCILLATIONS. They are oscillations produced by the energy transmitted to
a system from sources with non-oscillating character: damping or resistance with
dry friction, wind, maintained self-induction. Inside of motion equations, damp-
ing forces with variable coefficients appear and in certain moments, the character-
istic equation admits real positive roots (instead of complex roots) which increase
the amplitude. The phenomenon of resonance appears when we have perturbing
external forces, while self-oscillations appear because of an interaction between
internal forces, particularly if these forces depend on speed with high exponents.
For example, we have self-oscillations in equations like:

ẍ −
(

c1 − c2x
2
)

ẋ + kx = 0,

ẍ −
(

c1 − c2ẋ
2
)

ẋ + kx = 0,

if the conditions |x| <
√

c1/c2, respectively |ẋ| <
√

c1/c2, are fulfilled for a short
period of time. After this period, the amplitude A (t) satisfy A (t) → A∗ when
t → ∞, independently of the initial conditions.

Returning to (2.20), we remark that we have to find A = A (t, A0) and we have
to determine a limit stationary amplitude A∗, when t → ∞. The motivation of this

operation is that the equation Ȧ = [(µω) / (2π)] Φ (A) represents the variation of
the energy and of the mechanical work produced by the nonlinear terms f (x, ẋ)
of an equation of the form ẍ + x = f (x, ẋ). If the mechanical work f (x, ẋ) dx =
f (x, ẋ) ẋdt is negative for a short period of time, then the energy decreases and the
motion is amortized. If the mechanical work is positive for a short period of time,
then the energy decreases. It is easy to see the part of Φ(A) in the calculation of
the mechanical work:

∫ 2π

0

fdx = πA

(

1 − A2 (ε + 3δ)

4

)

= Φ(A)

These two situations do not assure an energetic balance for all periods, therefore
the condition for the uniformity of self-oscillations is

Φ(A) =

∫ 2π/ω

0

f (A cos ωt,−Aω sinωt) sinωtdt = 0.

We find A∗ which verifies Φ(A∗) = 0 and A (t) → A∗ when t → ∞. For α > 0,

the critical point is A∗ =
√

4/ (ε + 3δ) =
√

4α/ (β + 3γω2) and coincides with A∗
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given by (2.21). By (2.21) we have

lim
t→∞

A (t) = A∗ =

√

4α

β + 3γω2

and from (2.22) it follows that the trajectories from the first periods give self-oscil-
lations with amplitude A (t) which tend to A∗ when t → ∞ irrespectively of the
initial conditions. These trajectories are spiral lines which tend to the stable limit

cycle x2 + y2/ω2 = A∗2. Observe that x (t) → ±A∗ and the asymptotes x = ±A∗ to
the graph x = x (t) have initially a number of oscillations.

3. THE STUDY OF THE (RVP) SYSTEM IN THE NON-AUTONOMOUS CASE

Consider the equation

ẍ + ω2x =
(

α − βx2 − γẋ2
)

ẋ + F0 sin νt. (3.23)

In Section 1 we presented a manner to specify a small parameter µ for equation
(3.23). Making the substitutions νt = τ ,

(

ω2 − ν2
)

/ν2 = µχ, λ = α/ (νµ), ε =

β/ (νµ), δ = γν/µ, f0 = F0/
(

ν2µ
)

we have ẋ = x′ (τ) ν, ẍ = x′′ (τ) ν2 and equation
(3.23) becomes

x′′ + x = µ
[

−χx +
(

λ − εx2 − δx′2
)

x′ + f0 sin τ
]

. (3.24)

Thus, we can consider that equation (3.23) has the form

ẍ + ω2x = µ
(

α − βx2 − γẋ2
)

ẋ + µf sin νt. (3.25)

In order to determine the solution x = x (t) which satisfies the initial condi-
tions A (0) = A0, θ (0) = 0, we use the numeric method of Krilov-Bogoliubov-
Mitropolski [2], [3], [5]: we seek for an asymptotic solution

x = A cos (ωt − θ) + µx1 + µ2x2 + . . . + µNxN ,

with A (t), θ (t) with slow variation and xi = xi (t). In the sequel, only the first
approximation will be used. Hence

x = A cos (ωt − θ) + µx1. (3.26)

We replace (3.26) in (3.25), we make the identification with respect to cos (ωt − θ),
sin (ωt − θ) and then with respect to µ1. In the obtained equations, we consider to

be zero the terms from the right side containing Ȧ, θ̇, so that we get the following
equations

Ä + 2Aωθ̇ − Aθ̇2 = 0, (3.27)

Aθ̈ + 2Ȧθ̇ − 2Ȧω = µ

(

−αAω +
1

4
βωA3 +

3

4
γω3A3

)

, (3.28)

ẍ1 + ω2x1 =
ωA3

(

β − γω2
)

4
sin 3 (ωt − θ) + f sin νt. (3.29)

Equations (3.27), (3.28) are the variational equations, while equation (3.29) is the per-
turbational equation. Now, we replace equations (3.27), (3.28) with the following
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equations

θ̇ = 0,

−2Ȧω = µ

(

−αAω +
1

4
βωA3 +

3

4
γω3A3

)

,

which are equivalent to

θ̇ = 0, (3.30)

Ȧ =
µαA

(

A∗3 − A2
)

2A∗2
, with A∗ =

√

4α

β + 3γω2
. (3.31)

By integrating the differential system (3.30), (3.31) and by using the initial condi-
tions A (0) = A0, θ (0) = 0, we obtain

θ = 0, A =
A∗

√
1 − Ce−µαt

, with A∗ =

√

4α

β + 3γω2
, C = 1 −

(

A∗

A0

)2

. (3.32)

Taking account of (3.32), equation (3.29) becomes

ẍ1 + ω2x1 =
ωA3

(

β − γω2
)

4
sin 3ωt + f sin νt.

In order to solve this equation, we consider A ≈ const and we seek for a solution
of the form

x1 = d1 sin 3ωt + d2 sin νt

and we obtain

x1 = −A3
(

β − γω2
)

32
sin 3ωt +

f

ω2 − ν2
sin νt. (3.33)

From (3.26), (3.32), (3.33) we deduce the final solution

x = A cos ωt − µA3
(

β − γω2
)

32
sin 3ωt +

µf

ω2 − ν2
sin νt,

with A given by (3.32). Remark the term x1o = A (t) cos ωt, which results from the
homogeneous linear equation, the perturbing term −

[

µA3
(

β − γω2
)

/32
]

sin 3ωt

and the term
[

µf/
(

ω2 − ν2
)]

sin νt which is due to the excitation. We also re-
mark that if ν ↔ ω, then, besides the the self-oscillations, we have resonance and
hence, instability. Remark that, by using using the linearization and asymptotic
theories, the nonlinear terms f (x, ẋ) can introduce in the final solution harmonic,
sub-harmonic or super-harmonic therms which can make a resonance with the os-
cillation induced by ẍ + ω2x. It is the case of −

[

µA3
(

β − γω2
)

/32
]

sin 3ωt. These
forced appearances request separated solutions [2], [3].

We have limt→∞ A (t) = A∗ =
√

4α/ (β + 3γω2) with self-oscillations and
|x (t)| ≤ 2 + µ/4 + µk/

(

ω2 − ν2
)

, |y (t)| ≤ M . This means that the elongation
is bounded, and that we have a simple stability in the point O∗ (0, 0) which is a
simply stable center.

In order to determine the so called resonance curve, we return to equation (3.24)
and we apply the variation of constants method. We have

x = a cos τ + b sin τ, (3.34)
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a′ cos τ + b′ sin τ = 0, (3.35)

x′ = −a sin τ + b cos τ, x′′ = −a′ sin τ + b′ cos τ − a cos τ − b sin τ. (3.36)

By replacing (3.34), (3.36) in (3.24), we obtain a linear algebraic equation in (a′, b′).
By solving the linear system formed by this equation and equation (3.35) and by
averaging the obtained relations with respect to the period T = 2π, we obtain















a′ =
µ

2

[

χb + λa − a
4

(

a2 + b2
)

(ε + 3δ) − f0

]

,

b′ =
µ

2

[

−χa + λb − b
4

(

a2 + b2
)

(ε + 3δ)
]

.

(3.37)

By applying the transformations

τ = τ1

2

µ
, X = a

√

ε + 3δ

4
, Y = b

√

ε + 3δ

4

to system (3.37), we get the system



















∂X

∂τ1

= λX + χY − X
(

X2 + Y 2
)

− F,

∂Y

∂τ1

= −χX + λY − Y
(

X2 + Y 2
)

,

(3.38)

with F = f0

√

(ε + 3δ) /4. Let us consider the polar coordinates

X = A cos θ, Y = A sin θ.

System (3.38) becomes



















∂A

∂τ1

= λA − A3 − F cos θ ≡ P (A, θ) ,

∂θ

∂τ1

= −χ + F sin θ
A ≡ Q (A, θ) .

Now, we consider the algebraic system
{

P (A, θ) = 0,
Q (A, θ) = 0,

(3.39)

with unknowns (A, θ). By eliminating θ between the equations of system (3.39) we
obtain the resonance curve

A2

[

χ2 +
(

λ − A2
)2

]

= F 2. (3.40)

The study of the nonlinear system (3.38) which depends on parameters λ, F
and of the resonance curve (3.40) can be numerically done in the plane

(

U = χ2, V

= A2
)

. The critical points are solutions of the algebraic system P (U, V ) = 0, Q (U,
V ) = 0. They can be numerically determined by giving different values to F .
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The linearised differential system of (3.38) has the following characteristic equa-
tion

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂P

∂A
− ρ

∂P

∂θ

∂Q

∂A

∂Q

∂θ
− ρ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 ⇔ ρ2 − sρ + p = 0,

where s = 2λ − 4A2, p = 3A4 − 4λA2 + λ2 + χ2. The equivalent conditions for
asymptotic stability in the point (U, V ) are s < 0, p > 0, i. e.

{

V > λ
2
,

U > −3V 2 + 4λV − λ2.

Consequently, the shaded zone bounded by the parabola U = −3V 2 + 4λV −
λ2 and the straight lines V = λ

2
, U = 0 will be a zone of instability and hence

a zone of resonance (see FIGURE 1). We will search the values of F for which
the corresponding resonance curve pass trough the instability zone. In the plane
(U, V ), the resonance curve (3.40) has the following equation

V
[

U + (λ − V )
2
]

− F 2 = 0,

therefore
dV

dU
= − V

3V 2 − 4λV + λ2 + U
.

FIGURE 1

Our aim is to determine the points (U, V ) of the resonance curve for which
dV

dU
=

±∞, i.e. the points of the resonance curve for which the tangents to the resonance
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curve in these points are vertical. Hence, we have to solve the algebraic system
{

V
[

U + (λ − V )
2
]

− F 2 = 0,

3V 2 − 4λV + λ2 + U = 0.
(3.41)

The solutions of (3.41) are the intersection points between the resonance curve and
the parabola U = −3V 2 + 4λV − λ2. By eliminating U in (3.41), we obtain the
following third degree equation

−2V 3 + 2λV 2 − F 2 = 0,with V ≥ 0.

It is easy to see that this equation admits real nonnegative roots if and only if

F 2 ≤ 8λ3

27
.

To be more precise, we have

- if F 2 < 8λ3

27
, then the resonance curve intersects the parabola U = −3V 2 +

4λV − λ2 in two distinct points,

- if F 2 = 8λ3

27
, then the resonance curve intersects the parabola U = −3V 2 +

4λV − λ2 in its vertex,

- if F 2 > 8λ3

27
, then the resonance curve does not intersect the parabola U =

−3V 2 + 4λV − λ2 (see FIGURE 1).

Remark 3.2. If U < U2 or U > U1, then we have periodic, normal oscillations (sta-
ble oscillations). If U2 < U < U1, then we have resonance because the amplitude
V = A2 increases in this interval.
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