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Some refinements of relative information inequality

J. ROOIN AND A. MORASSAEI

ABSTRACT. In this article, using some refinements of Jensen’s discrete inequality, we give some new
refinements of Kullback-Leibler’s relative information inequality.

1. INTRODUCTION

Let C be a convex subset of a real vector space, x1, · · · , xn ∈ C, and ϕ : C →
R a convex mapping. Also, let µ = (µ1, · · · , µm) and λ = (λ1, · · · , λn) be two
probability measures; i.e. µi, λj ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n) with

m
∑

i=1

µi = 1 and
n

∑

j=1

λj = 1.

By a (discrete separately) weight function (with respect to µ and λ), we always
mean a mapping ω : {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n} → [0,∞), such that

m
∑

i=1

ω(i, j)µi = 1 (j = 1, · · · , n),

and

n
∑

j=1

ω(i, j)λj = 1 (i = 1, · · · ,m).

For example, if u = (u1, · · · , um) and v = (v1, · · · , vn) with ‖u‖ = (
∑m

i=1 u2
i )

1/2 ≤ 1

and ‖v‖ = (
∑n

j=1 v2
j )1/2 ≤ 1 belong to µ⊥ and λ⊥ respectively, then the function ω

with

ω(i, j) = 1 + uivj (1 ≤ i ≤ m, 1 ≤ j ≤ n)

is a weight function.
In Theorem 5.2.3 of [2] the following refinement of discrete Jensen’s inequality is
established, see also [4] and [3]:
If ω1 and ω2 are two weight functions, then we have

ϕ





n
∑

j=1

λjxj



 ≤
m

∑

i=1

µiA



ϕ;
n

∑

j=1

ω1(i, j)λjxj ,

n
∑

j=1

ω2(i, j)λjxj



 ≤
n

∑

j=1

λjϕ(xj),

(1.1)
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where the arithmetic mean A is defined for an integrable function f over an interval with
end points a and b, by

A(f ; a, b) =
1

b − a

∫ b

a

f(x)dx. (1.2)

(We set A(f ; a, a) = f(a).)
In the following section, using this fact, we refine the ( Kullback-Leibler’s relative)
information inequality, and in particular, we obtain some inequalities concerning
special means.

2. MAIN RESULTS

Let p = (p1, · · · , pn) and q = (q1, · · · , qn) be such that pj , qj > 0 (1 ≤ j ≤ n)
with

∑n
j=1 pj =

∑n
j=1 qj = 1. The Kullback-Leibler’s relative information D(p||q)

is defined by

D(p||q) =

n
∑

j=1

pj ln
pj

qj
. (2.3)

The information inequality [1] is

D(p||q) ≥ 0. (2.4)

In this section, using the refinement of discrete Jensen’s inequality described
above, we give some new refinements of information inequality (2.4). In partic-
ular, we get some interesting inequalities between various means of pj ’s and qj ’s,
which are difficult to handle them directly.

Theorem 2.1. With the above assumptions, we have

D(p||q) ≥ ln

m
∏

i=1

I





n
∑

j=1

ω1(i, j)qj ,

n
∑

j=1

ω2(i, j)qj





−µi

≥ 0, (2.5)

where the identric mean I is defined for each a, b > 0 by

I(a, b) =







a if a = b,

1
e

(

bb

aa

)
1

b−a

if a 6= b.

In particular,
n

∏

i=1

q
pi

i ≤

n
∏

i=1

I(pi, qi)
pi ≤

n
∏

i=1

p
pi

i . (2.6)

Proof. The function ϕ(x) = − ln x is convex on (0,+∞). So, letting λj = pj and
xj =

qj

pj
(1 ≤ j ≤ n) in (1.1), and taking into account that

A(− ln; a, b) = − ln I(a, b) (a, b > 0),

we get (2.5).
The inequalities in (2.6) follow from (2.5), by taking

m = n, µi = pi, ω1(i, j) = 1, ω2(i, j) =
δij

pj
(i, j = 1, · · · , n),

and considering I(ac, bc) = cI(a, b) (a, b, c > 0). �
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Theorem 2.2. With the above assumptions, we have

D(p||q) ≥ ln

√

√

√

√

√

√

√

m
∏

i=1

I











n
∑

j=1

ω1(i, j)pj





2

,





n
∑

j=1

ω2(i, j)pj





2






∑

n
j=1

ω1(i,j)+ω2(i,j)
2 pjµi

≥ 0.

(2.7)
In particular,

n
∏

i=1

(

pi

qi

)pi

≥

√

√

√

√

n
∏

i=1

I

(

1,
p2

i

q2
i

)

pi+qi
2

≥ 1. (2.8)

Proof. The function ϕ(x) = x lnx is convex on (0,+∞). So, letting λj = qj and
xj =

pj

qj
(j = 1, · · · , n) in (1.1), and taking into account that

A(ϕ; a, b) =
a + b

4
ln I(a2, b2) (a, b > 0),

we get (2.7).
The inequalities in (2.8) follow from (2.7) by taking

m = n, µi = qi, ω1(i, j) = 1, ω2(i, j) =
δij

qj
(i, j = 1, · · · , n).

�

Theorem 2.3. With the above assumptions, we have

n
∏

j=1

(

qj

pj

)pj

≤

m
∑

i=1

µiL





n
∏

j=1

(

qj

pj

)ω1(i,j)pj

,

n
∏

j=1

(

qj

pj

)ω2(i,j)pj



 ≤ 1, (2.9)

where the logarithmic mean L is defined for each a, b > 0, by

L(a, b) =







a if a = b,
b − a

ln b − ln a
if a 6= b.

In particular,
n

∏

j=1

(

qj

pj

)pj

≤

n
∑

i=1

piL





n
∏

j=1

(

qj

pj

)pj

,
qi

pi



 ≤ 1. (2.10)

Proof. The function ϕ(x) = ex is convex on R and we have

A(ϕ; a, b) = L(ea, eb) (a, b ∈ R).

Therefore, taking xj = ln
qj

pj
and λj = pj (1 ≤ j ≤ n) in (1.1), we get

exp





n
∑

j=1

pj ln
qj

pj



 ≤

m
∑

i=1

µiL

(

e
∑ n

j=1 ω1(i,j)pj ln
qj

pj , e
∑ n

j=1 ω2(i,j)pj ln
qj

pj

)

≤
n

∑

j=1

pj exp

(

ln
qj

pj

)

,
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which yield (2.9).

Now, letting m = n, µi = pi, ω1(i, j) = 1 and ω2(i, j) =
δij

pj
(i, j = 1, · · · , n) in

(2.9), we get (2.10). �

Remark 2.1. If we set qj = 1
n (1 ≤ j ≤ n), the relative information inequality (2.4),

yields the entropy of the probability distribution inequality:

H(p1, · · · , pn) := −
n

∑

i=1

pi ln pi ≤ lnn.

This inequality has been refined in [5] as

1

n
≤

√

√

√

√

√

√

√

n
∏

i=1

I











n
∑

j=1

bijpj





2

,





n
∑

j=1

cijpj





2






∑

n
j=1

bij+cij

2 pj

≤

n
∏

i=1

p
pi

i , (2.11)

where B = [bij ] and C = [cij ] are two n×n double stochastic matrices [2]. It is easy
to see that (2.11) is an special case of (2.7), taking m = n, µi = qi = 1

n , ω1(i, j) =
nbij , ω2(i, j) = ncij (i, j = 1, · · · , n).

Remark 2.2. If we change the roles of pi’s and qi’s with each other in (2.6) and (2.8),
and multiply them correspondingly, we get

√

√

√

√

n
∏

i=1

p
qi

i q
pi

i ≤

n
∏

i=1

I(pi, qi)
pi+qi

2 ≤

√

√

√

√

n
∏

i=1

p
pi

i q
qi

i (2.12)

and

1 ≤

n
∏

i=1

(

I(p2
i , q

2
i )

piqi

)

pi+qi
2

≤

n
∏

i=1

p
pi

i q
qi

i

p
qi

i q
pi

i

, (2.13)

which are symmetric with respect to pi’s and qi’s.
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