
CREATIVE MATH. & INF.
16 (2007), 99 - 107

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

Computing constrained default extensions - a
constraint satisfaction problem
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ABSTRACT. Constrained default logic belongs to the class of default logics which formalize default
reasoning. This type of nonmonotonic reasoning is modelled by defaults which permit inferring conclu-
sions in the absence of complete information, using default assumptions. Using the classical inference
rules and the defaults, the set of initial facts is extended with formulas, called nonmonotonic theorems
(beliefs), obtaining extensions.

This paper presents a new approach in computing constrained extensions. We define the problem of
computing the generating default sets of extensions as a constraint satisfaction problem and we introduce
BTCE algorithm for solving this problem. The proposed algorithm is based on a top-down approach
and uses pruning for an efficient search.

1. INTRODUCTION

Default logics formalize the reasoning with incomplete information, overcom-
ing the lack of information by making default assumption about a situation. This
type of reasoning is nonmonotonic, that means: derived conclusions (only plausi-
ble, not necessarily true) may be later invalidated by new information. These log-
ical systems are based on first-order logic and use a new kind of inference rules,
the defaults, that model laws which are true with a few exceptions.

A default theory ([11]) ∆ = (D,W) consists of a set W of facts, as consistent
formulas of first order logic and a set D of default rules. A default has the form

d =
α : β1, . . . , βm

γ
, where: α is called prerequisite, β1, . . . , βm are called justifications

and γ is called consequent.

A default d =
α : β1, . . . , βm

γ
can be applied and thus derive γ if α is deductible

and it is consistent to assume β1, . . . , βm (meaning that ¬β1, . . . ,¬βm cannot be
derived).

The differences among different versions (classical, justified, constrained, ratio-
nal) of default logic are caused by the semantics (applicability condition) of the
defaults.

An extension of a default theory is a maximal set of conclusions (beliefs) derived
from the facts of W using classical derivation and the defaults as inference rules.

The set of defaults used in the construction of an extension is called the generat-
ing default set of the considered extension.
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Classical default logic was proposed by Reiter ([11]) and justified default logic was
introduced by Lukaszewicz ([4]). These two versions of default logic have the
disadvantage that the consistency condition for justifications is an individual one,
and thus some inconsistencies consequents-justifications (in classical version) and
justifications-justifications (in justified version) are not detected.

Two new versions, constrained default logic ([12]) and rational default logic ([8])
were developed, solving this drawback by keeping track of the implicit assump-
tions and verifying that they do not contradict each other. Therefore the consis-
tency condition for the justifications is a global one.

Due to its very high level of theoretical complexity (
∑P

2
= NPNP ), caused by

the great power of the inferential process, the problem of finding all extensions of
a general default theory, can be solved in an efficient manner only for particular
classes of default theories.

Related Work

In the literature there were developed several methods to solve the problem of
computing extensions of the versions of default logic, using different approaches.

In paper [3], a relaxed stratification of a default theory is the primary search-
space pruning technique for computing the classical extensions. The semantic
tableaux method is adapted to be used as a general or local prover.

Semantic tableaux method is used in [15] to compute classical extensions for a
decidable subset of default logic and is adapted in a top-down approach ([2]) for
building extensions of terminological default theories.

An uniform approach, based on a modified version of propositional semantic
tableaux method, for computing constrained and rational extensions, is presented
in paper [6].

Default reasoning is integrated into existing model elimination based provers
using the well-known Prolog Technology Theorem Proving Techniques ([14]) in
order to solve the query-answering problem for constrained and cumulative de-
fault logics.

Based on an operational approach and using pruning techniques for the search
tree ([1]), classical, justified and constrained extensions are computed.

In this paper we propose a constraint satisfaction based approach for computing
all generating default sets of constrained extensions for general default theories. It
is a top-down technique combined with pruning, that increases its efficiency. Its
main idea, based on the global characterization of constrained extensions, is to
consider the largest grounded subset of defaults and then to remove one by one
the defaults in order to generate all the consistent contexts.

We focus in this paper only on constrained default logic, but our approach can
be easily adapted for rational default logic, also.

The paper is structured as follows. In Section 2 we introduce the main theoret-
ical aspects of constrained default logic. Section 3 explains our approach, present-
ing the theoretical model for computing the generating default sets of constrained
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extensions (Subsection 3.1) and BTCE algorithm for this computation (Subsection
3.2). Conclusions and future work are outlined in Section 4.

2. CONSTRAINED DEFAULT LOGIC

Constrained default logic was introduced by Schaub ([12]). The consistency condi-
tion is a global one and it is based on the observation that in common-sense reason-
ing we assume things, we keep track of our assumptions and we verify that they
do not contradict each other. A constrained extension is defined as a pair (E,C).The
actual extension E is embedded in a consistent context C where are retained all the
justifications of the generating defaults.

The results from [7] show that default theories can be represented by unitary

theories (all the defaults have only one justification, d = α:β
γ

) in such a way that

extensions (classical, justified, constrained, rational) are preserved. In this paper
we will use only unitary default theories and the following notations:
Prereq(d) = α, Justif(d) = β, Conseq(d) = γ, Prereq(D) =

⋃

d∈D
Prereq(d),

Justif(D) =
⋃

d∈D
Justif(d), Conseq(D) =

⋃

d∈D
Conseq(d)

and Th(X) = {A|X ⊢ A} the classical deductive closure of the set X of formulas.
In the Definition 2.1 we will introduce the property of groundness that will be used
in the definitions of default extensions.

Definition 2.1. ([2]) Let W be a set of facts and D be a set of defaults. We define
D0 = ∅ and, for i ≥ 0,

Di+1 = Di ∪
{

d =
α : β

γ
| d ∈ D and W ∪ Conseq(Di) ⊢ α

}

.

D is called grounded in W if D =
⋃∞

i=0
Di. If D is not grounded in W , then

⋃∞

i=0
Di

is the largest subset of D that is grounded in W .

Definition 2.1 is equivalent to the one given in [15] and its advantage is that can
be used as a decision procedure for checking the groundness of a set of defaults
and also to compute the largest grounded subset of a set of defaults.

All versions of default logics were introduced using fixed-point operators for
the definition of extensions. These definitions are difficult to be used in the pro-
cess of constructing extensions and thus equivalent global characterizations of ex-
tensions were proposed. Theorem 2.1 provides a global characterization of con-
strained extensions using the generating default sets.

Theorem 2.1. ([12]) Let (D,W) be a default theory, and let E, C be sets of formulas.
(E, C) is a constrained extension of (D,W) iff E = Th(W ∪ Conseq(Dg)) and C =
Th(W∪Conseq(Dg)∪Justif(Dg)) for a maximal set Dg ⊆ D such that Dg is grounded
in W and condition (i) is satisfied:

(i) the set W ∪ Conseq(Dg) ∪ Justif(Dg) is consistent.

Theorem 2.1 states that the reasoning process formalized by constrained default
logic is guided by a consistent context. Each constrained extension is generated by
a set Dg of defaults whose justifications and consequents are together consistent,
and at the same time consistent with the set of facts.



102 Gabriela Şerban and Mihaiela Lupea

We remark that a default theory has always a constrained extension because
Dg = ∅ is grounded in W , W is consistent and thus, in the worst case, ∅ is the only
generating default set.

3. COMPUTING CONSTRAINED DEFAULT EXTENSIONS - A CONSTRAINT

SATISFACTION PROBLEM

In this section we present the problem of computing the generating default sets
of constrained extensions as a constraint satisfaction problem ([17]).

Constraint based reasoning is a simple, but powerful paradigm in which many
interesting problems can be formulated. Informally, a constraint satisfaction problem
(CSP) is a problem stated in the form of a set of constraints. The general CSP is
NP-complete.

Theorem 2.1 from Section 2 shows that the problem of computing all default
extensions can be reduced to the problem of finding the generating default sets for
those extensions.

This approach is a top-down constraint satisfaction-based approach that uses
pruning for an efficient search. Its basic idea is to consider the largest grounded
subset D′ of D and then remove one by one the defaults in order to generate all the
consistent contexts.

In order to better explain our approach, in Subsection 3.1 we define the problem
of computing the generating default sets of constrained extensions as a constraint
satisfaction problem. In Subsection 3.2 we give the BTCE algorithm for computing
these sets.

3.1. Theoretical model. In this section we define the problem of computing the
generating default sets of constrained extensions as a constraint satisfaction prob-
lem.

Let (W,D) be a default theory and D′ be the largest grounded subset of D in W.

Let us assume that

D = {d1, d2, . . . , dm}

and

D′ = {di1 , di2 , . . . , din
},

where n ≤ m, 1 ≤ ij ≤ m, ∀j = 1, . . . , n and ij 6= il, ∀j, l ∈ {1, . . . , n}, j 6= l.

Definition 3.2. A set of defaults M ∈ 2D
′

is called a candidate generating default
set of a constrained extension (we will refer it as a candidate). We denote by G the
set of all candidates which generate consistent contexts and is defined as follows:

G = {M |M ∈ 2D
′

, W ∪ Conseq(M) ∪ Justif(M) is a consistent set}.

We mention that we will refer an element from G as a consistent candidate.
In our approach, the candidates will be chosen as elements from 2D

′

, instead of
2D, because only grounded defaults can belong to generating default sets.

Definition 3.3. A candidate M ∈ 2D
′

is called maximal in a set S of candidates, if
M has no superset in S, i.e., 6 ∃M ′ ∈ S, M ⊂ M ′.
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Definition 3.4. We define the problem of computing the generating default sets of
constrained extensions as a Constraint Satisfaction Problem (CSP), expressed as a
triple < X,D,C >, where:

• X = {x1, x2, . . . , xk} is the set of variables, where k ≤ n.

• D = {D1,D2, . . . ,Dk} is the set of domains, Dj = {0, 1}, ∀j = 1, . . . , k.
The significance of a variable value is as follows:
if xj = 1 then the default dij

is eliminated from D′,
if xj = 0 then the default dij

is not eliminated from D′.
• C is the set of constraints, expressed in equations below:

(i) The set D′ \
⋃k

j=1,xj=1
dij

is a maximal consistent candidate.

(ii) ∀l = 1, ..., k− 1, the set D′ \
⋃l

j=1,xj=1
dij

is not a consistent candidate

or is a consistent candidate, but not a maximal one.

Definition 3.5. Let CSP be the constraint satisfaction problem corresponding to a
default theory and xl=(x1, x2, . . . , xl), l ≤ k be a partial instantiation of the vari-
ables. We will denote by Mxl the candidate corresponding to the instantiation xl,

Mxl = D′ \
⋃l

j=1,xj=1
dij

. We will call Mxl = D′ \
⋃l

j=1,xj=1
dij

the candidate gen-

erating default set corresponding to the instantiation xl. If Mxl is a consistent
candidate, then xl is called a valid instantiation.

Because of our top-down approach, in our view, a value of an instantiation
xl=(x1, x2, . . . , xl) of the problems’ variables is obtained by eliminating from D′

the defaults dij
, iff xj = 1, 1 ≤ j ≤ l.

Definition 3.6. Let CSP be the constraint satisfaction problem defined above. A
consistent candidate M ∈ G is called a generating default set of a constrained
extension if M is grounded in W and M is maximal in G. We will denote by

GDSEC the set of all Generating Default Sets of Constrained Extensions,

GDSEC = {M |M ∈ G, M is grounded in W and is maximal in G}.

3.2. The Algorithm for Computing the generating default sets of constrained Ex-
tensions (BTCE). Let us consider the problem of computing the generating default
sets of extensions, as formulated in Subsection 3.1. In this section we present the al-
gorithm for computing these sets, BTCE (Chronological BackTracking for Computing
Default Extensions).

The algorithm performs a depth-first search of the space of potential solutions of
the CSP defined in Subsection 3.1, combined with pruning techniques.

BTCE algorithm restricts the search to those regions of the search space where
is possible that maximal consistent contexts to be generated. It prunes out all the
regions of non-maximal consistent candidates.

We have to mention that we will use in the algorithm description the notions of
maximality and groundness as they were introduced in Definition 3.3 and Defini-
tion 2.1, respectively.

The main idea of the algorithm is the following:
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• A depth-first search is performed in the solution space in order to deter-
mine a solution set S containing all the maximal consistent candidates. The
search will be pruned on the branches that will not lead to a solution.

• The variables of the CSP defined in Section 3.1 are instantiated sequentially,
in order to obtain a valid instantiation (Definition 3.5).

• Backtracking takes place when an instantiation that is not valid is reached.

• Pruning case 1

A pruning of the search is made when a candidate M that is not max-
imal in S is reached. The pruning is made because a superset of M was
already detected. This case is applied if M ∈ G, but without checking
whether M is a consistent candidate or not (the maximality condition im-
plies that M is a consistent candidate). The efficiency of the pruning case
1 from the algorithm derives from using the condition for a state not to be
maximal in the partial set of solutions. This condition is more powerful,
but computationally less expensive, than checking the property of being a
consistent candidate.

• Pruning case 2

If a consistent candidate M ∈ G that is maximal in S is reached during the
search, M is retained in the solution set S. According to Theorem 2.1 that a
constrained extension is generated by a maximal consistent candidate, the
corresponding partial instantiation will not be extended any more.

• After the solution set S was determined (all the valid paths in the search
space were searched), a filtering step (for checking the groundness of a
consistent candidate in the set of facts) is applied, in order to construct

from S the generating default sets GDSEC (Definition 3.6).

We give next BTCE algorithm. An auxiliary set (the solution set S) that contains
all maximal consistent candidates is used.

Algorithm BTCE is

Input: - the default theory (W, D)

Precondition: - the set of facts W is a consistent set

Output: - GDSEC all the generating default sets

Begin

S ← ∅ //the solution set is initially empty

@Compute D′ ← {di1 , di2 , . . . , din} the largest grounded subset of D

Call BT(W,D′, x, 1,S) // the backtracking procedure is called

GDSEC ← ∅ //the output set is initially empty

For each M ∈ S do //the solution set S is filtered by checking
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//the groundness property of M

M ′ ← the largest grounded subset of M

If M ′ 6= ∅ then

GDSEC ← GDSEC ∪ {M ′}

EndIf

EndFor

End.

Procedure BT (W,D′, x, l,S) is

Input: - the default theory (W, D)

- the partial instantiation x = (x1, x2, . . . , xl−1) of the CSP, if l > 1

- the solution set S

Precondition: 1 ≤ l ≤ n

Output: - the solution set S

- the partial instantiation x = (x1, x2, . . . , xl) of the CSP

Begin

If l ≤ n then

For j ← 0, 1 do //we take each possible value for variable xj

xl ← j

@Compute the set M ← D′ \
⋃l

j=1,xj=1
dij

If (M is maximal in S) then

If (M ∈ G) then //M is a maximal consistent candidate

S ← S ∪ {M}

Exit// *** Pruning case 2 ***

else

Call BT (D,D′, x, l + 1,S) //the backtracking procedure is called

EndIf

else //*** Pruning case 1 ***

EndIf

EndFor

EndIf

End.

The top-down exploration method and the pruning conditions proposed above
provide all the generating default sets of extensions, assuring BTCE completeness.

Based on the outputs of BTCE algorithm, the constrained extensions are ob-
tained as follows:

• If GDSEC = {∅}, then the default theory has only one constrained exten-
sion, (Th(W), Th(W)), with ∅ as a generating default set.

• If GDSEC = {g1, . . . , gm}, the default theory has m constrained extensions,
(Th(W ∪ Conseq(gi)), Th(W ∪ Conseq(gi) ∪ Justif(gi))), i = 1, . . . ,m.

Example 3.1. Let us consider (D,W) a default theory with W = {F ∨ C,K} and
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D = {d1 =
: ¬B ∧ ¬C

E
, d2 =

K : ¬A

C
, d3 =

C : ¬B ∧ ¬F

G
,

d4 =
: F

B
, d5 =

F : A

B
}

The largest grounded subset of D in W is D′ = {d1, d2, d3, d4}.
Using BTCE algorithm, during the depth-first exploration of the search space,

all pruning cases are encountered. Three constrained extensions are computed:
(E1, C1), (E2, C2), (E3, C3) with D1,D2,D3 as generating default sets.

• valid instantiation (0, 1, 1, 1) corresponding to D1 = {d1}

E1 = Th({F ∨ C,K,E}), C1 = Th({F ∨ C, K,E,¬B ∧ ¬C}).

• valid instantiation (1, 0, 0, 1) corresponding to D2 = {d2, d3}

E2 = (Th({F ∨ C,K,C,G}), C2 = Th({F ∨ C,K,C,G,¬A,¬B ∧ ¬F}).

• valid instantiation (1, 0, 1) corresponding to D3 = {d2, d4}

E3 = Th({F ∨ C,K,C,B}), C3 = Th({F ∨ C, K,C,B,¬A,F})).

4. CONCLUSIONS AND FURTHER WORK

In this paper a constraint satisfaction based approach for computing the gener-
ating default sets of constrained extensions is presented. This problem is defined
as a constraint satisfaction problem.

We have also introduced BTCE algorithm for computing the generating default
sets of constrained extensions, based on the idea of searching the solution space of
the associated CSP and pruning the paths that lead to failure.

The main disadvantage of BTCE, as all the other similar approaches from the
literature for general default theories, is the fact that it is computational expensive
(exponential as time and space).

Further work can be done in the following directions:

• To improve our approach using heuristic search procedures.

• To study the possibility to use other search techniques, as intelligent back-
tracking techniques ([16]): backjumping, backmarking, etc.

• To use heuristics for variables’ instantiation in the associated CSP.
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• To extend this approach for computing constrained default extensions to-
wards a distributed one, using an asynchronous version of the BTCE algo-
rithm.

• To use splitting techniques ([3]) for default theories and local search proce-
dures for the strata (clusters) of the theory.
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