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multiresolution analysis constructions
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ABSTRACT. As a continuation of a previous work on generalizing the multiresolution analysis from
the wavelets and applying it in a lattices context, this paper studies multiresolution analysis on sub-
sets of R

n. Of primary interest are multiresolution analysis by monotonic and translation-invariant
functions; the paper studies their characterisation, properties, and possible constructions.

1. INTRODUCTION

Morphological transforms are an important tool in image processing. They are
somewhat complementary to the linear transforms (gaussian filter and Fourier or
wavelets transforms).

Wavelet transforms earned an important place in image processing due to two
important features: they can decompose an image into simpler elements, so that
we can construct operators that act independently on each such element, and they
can be used for producing a series of simpler, “coarser” images, useful for a top-
down analysis of the image.

One can completely represent a function by its levelset decomposition. As
shown in [6] and refined in [4], one can apply any monotonic morphological trans-
form (subject to a few technical conditions) independently on each levelset of a
function, and then rebuild a function from the resulting sets. This way, the de-
composition into levelsets plays the same role to the monotonic morphological
transforms as the Fourier decompositions to the linear transforms.

On the other hand, one can construct multiresolution analysis based on mor-
phological operators. Such constructions are studied, for example, in [1], [2], [3],
and [5].

A brief recall of the morphological operators and of the multiresolution anal-
ysis construction is given in the next section of the paper. Section 3 introduces
the characterisation of a morphological operator by a family of subsets of the do-
main, and establishes some relations between properties of this characteristic set
and properties of the original morphological operator. Special attention is payed
to morphological operators that can form a multiresolution analysis.
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2. MORPHOLOGICAL OPERATORS AND APPLICATIONS

Let D ⊆ R
d denote the domain on which the images are defined; usually D = R

d

or D = [0, 1]d or even D = Z
d.

As we will study translation-invariant operators, we will require in the follow-
ing that D be itself translation-invariant, which means that ∀x, y ∈ D, x − y ∈ D.

The transforms we analyse take a subset of the domain D and yield another
subset of D; thus, they are generally of the form

T : K → K, (2.1)

where K ⊆ P(D) is a conveniently-chosen subset of the set of all subsets of D. Use-
ful choices for K are the whole P(D) and the set of Lesbegue measurable subsets
of D.

Again, we will require in the following that ∀X ∈ K and ∀x ∈ D we have
(X + x) ∈ K and (−X) ∈ K

The definitions of a morphological transform vary from one source to another,
all of them requiring that the transform be of the form in (2.1).

We will call a morphological transform T : K → K

• monotonic, if ∀X ⊆ Y , T (X) ⊆ T (Y );
• translation-invariant, if ∀X ∈ K, ∀x ∈ D, T (X + x) = T (X) + x;
• mirror-invariant, if T (−X) = −T (X);

Recall from [5] the definition of a multiresolution analysis.
Let I be a set of indices, I = Z or I = R.

Definition 2.1. Ts : K → K, s ∈ I , define a multiresolution analysis over K if:

• if s ≤ r then Ts ◦ Tr = Ts;
• with notation Vs = Ts(K), if s ≤ r then Vs ⊆ Vr.

3. THE CHARACTERISTIC SET OF T

Let T : K → K be a monotonic and translation-invariant morphological trans-
form.

Definition 3.2. We call the characteristic set of T the set:

BT = {X ∈ K : 0 ∈ T (X)} (3.2)

The following theorems give the properties of the characteristic set and state
that the characteristic set completely defines the morphological transform.

Theorem 3.1. If X ∈ BT and Y ⊇ X , then Y ∈ BT , for any X,Y ∈ K.

The proof is immediate.

Theorem 3.2. Suppose B ⊆ K verifies that if X ∈ B and Y ⊇ X then Y ∈ B. Then
T : K → K given by

T (X) = {x ∈ D : (X − x) ∈ B} (3.3)

is monotonic and translation-invariant and BT = B.
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Proof. (1) Monotonicity: Let X,Y ∈ K, X ⊆ Y . Then for any x ∈ D, (X − x) ⊆
(Y −x). On the other hand, for any x ∈ T (X), by (3.3) we have (X−x) ∈ B.
It results that, for any x ∈ T (X), (Y − x) ∈ B and therefore x ∈ T (Y ).
Therefore T (X) ⊆ T (Y ).

(2) Translation invariance: Let z ∈ D. We have:

T (X + z) = {x ∈ D : ((X + z) − x) ∈ B} =

= {x ∈ D : (X − (x − z)) ∈ B} =

= {y + z ∈ D : (X − y) ∈ B} =

= T (X) + z

(3) BT = B: X ∈ BT is equivalent, because of (3.2), to 0 ∈ T (X) and, because
of (3.3), is further equivalent to (X − 0) ∈ B, or, in other words, X ∈ B.

�

Theorem 3.3. If T : K → K is monotonic and translation-invariant, then

T (X) = {x ∈ D : (X − x) ∈ BT }

Proof. x ∈ T (X) if and only if 0 = x− x ∈ T (X − x) which by (3.2) is equivalent to
(X − x) ∈ BT , in other words, x ∈ {x ∈ D : (X − x) ∈ BT }. �

Theorems 3.2 and 3.3 state that there is a one-to-one mapping between the
monotonic and translation-invariant operators T and the sets B having the prop-
erty that if they contain a set they contain any superset of it.

In view of Theorem 3.1, we can define a characteristic set by a subset, such that
the characteristic set can be retrieved by adding supersets of all the elements in the
subset. This leads to:

Definition 3.3. We say that the set B0 spawns the set B if

B = {X ∈ K : ∃Y ∈ B0 such that Y ⊆ X}

The following question arises naturally: Given an operator T , is there a minimal
set B0 spawning BT ? Unfortunately, the answer is no (in the general case), as
shown by the following example:

Example 3.1. Let T (X) be the interior of X , in the usual topological sense. T is
monotonic and translation-invariant. However, there is no minimal set spawning
BT .

Indeed, BT is the set of neighborhoods of 0. A subset B0 spawning BT would be
the set of discs centered in 0. However, there is no minimal set B0 spawning BT .

Here is a list of classical monotonic and translation-invariant transforms and
their characteristic set:

erosion: of radius r: BT is spawned by the set containing the disc of center 0
and radius r;

dilatation: of radius r: BT is spawned by the set containing as singletons all
the points of the disc centered in 0 and of radius r;

morphological opening: of radius r: BT is spawned by the set of discs of
radius r containing the origin;
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morphological closure: of radius r: BT is the set of all sets in K having non-
void intersections with all discs of radius r containing the origin;

median filter: of radius r: BT is spawned by the set of subsets of the disc
centered in origin and of radius r, having the area of at least 1

2
πr2;

topological closure: : BT is spawned by the set of sets of the elements of
sequences convergent towards 0.

3.1. Compound operators and characteristic sets. The following gives the rela-
tions between the characteristic sets of monotonic and translation-invariant oper-
ators where function composition is involved.

Given BT and BU , where T and U are monotonic translation-invariant opera-
tors, BT◦U is given by:

BT◦U =
{

X ∈ K : {x ∈ D : (X − x) ∈ BU} ∈ BT

}

. (3.4)

That is, BT is the set of sets X with the property that the positions where they can
be translated to yield a set in BT form the mirroring of a set in BU .

Using the above relation, we can state the condition for a monotonic and
translation-invariant operator to be idempotent.

T is idempotent if and only if

BT =
{

X ∈ K : {x ∈ D : (X − x) ∈ BT } ∈ BT

}

,

or, equivalently, if

X ∈ BT ⇔ T (X) ∈ BT .

Finally, the multiresolution condition of Definition 2.1 can be written as follows:
Ts = Ts ◦ Tr if and only if

BTs
=

{

X ∈ K : {x ∈ D : (X − x) ∈ BTr
} ∈ BTs

}

or, equivalently, if

X ∈ BTs
⇔ Tr(X) ∈ BTs

4. CONCLUSIONS

The paper studies the morphological operators from the perspective of con-
structing multiresolution analysis. The monotonic translation-invariant morpho-
logical operators are shown to be fully characterized the characteristic set intro-
duced in Section 3. The characteristic set of the classical morphological operators is
given. Finally, the effects of operator composition and multiresolution conditions
are given in terms of characteristic set operations and properties.
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