
CREATIVE MATH. & INF.
16 (2007), 143 - 150

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

Metrics for component-based system development

CAMELIA ŞERBAN and ANDREEA VESCAN

ABSTRACT. Component-based development (CBD) advocates the acquisition, adaptation, and in-
tegration of reusable software components to rapidly develop and deploy complex software systems
with minimum engineering effort and resource cost. The work of integrating the components with each
other and with the rest of the system is the most important part of the component-based development
process.

The interaction among components in an assembly is essential to the overall quality of the system.
When integrating components into a system assembly, it would be useful to predict how the quality
attributes for the whole system will be. In order to predict and to asses quality attributes, the usage of
software metrics is a necessity.

Useful insight on the specificities to consider when developing metrics for CBD are presented,
both concerning individual components (assessing components in isolation) and component assem-
blies (assembly-centric evaluation approach) are presented. Concerning the component-assembly ap-
proach we adapt metrics for object-oriented design (CBC - Coupling Between Components) and new
metrics are defined (DDT - Depth Dependence Tree and BDT - Breadth Dependence Tree).

1. INTRODUCTION

Since the late 90’s Component Based Development (CBD) is a very active area
of research and development. Component Based Software Engineering (CBSE) is
the emerging discipline of the development of software components and the de-
velopment of systems incorporating such components. Its goals, among others,
are to consistently increase return on investment and time to market, while assur-
ing higher quality and reliability than can be achieved through current software
development [4].

Development using components is focused on the identification of reusable en-
tities and relations between them [3]. The interaction among components in an
assembly is essential to the overall quality of the system. When integrating com-
ponents into a system assembly, it would be useful to predict how the quality
attributes for the whole system will be. In order to predict and to asses quality
attributes, the usage of software metrics is a necessity.

Metrics have become essential in some disciplines of software engineering. In
forward engineering they are being used to measure software quality and to es-
timate cost and effort of software projects [1]. In the field of software evolution,
metrics can be used for identifying stable or unstable parts of software systems,
as well as for identifying where refactorings can be applied or have been applied
[5], and for detecting increases or decreases of quality in the structure of evolving
software systems.

Received: 15.09.2006. In revised form: 19.02.2007
2000 Mathematics Subject Classification. 68Q01, 68Q15.
Key words and phrases. Software metrics, component-based development, assembly-centric evaluation.

143



144 Camelia Şerban and Andreea Vescan

In the area of software reengineering and reverse engineering, metrics are being
used for assessing the quality and complexity of software systems, as well as get-
ting a basic understanding and providing clues about sensitive parts of software
systems.

A short overview of component assembly metrics, including the proposals of
Narasimhan and Hendradjaya [10] and Hoek et al. [7] is presented in Section 2.

Our view of component assemblies as a graph is presented in Section 3. Starting
from the assembly graph we construct the dependences tree. Existing metrics for
object-oriented design [8, 11] are adapted (see Section 3.3) for component assem-
blies - Coupling Between Components (CBC).

Metrics for the component-based system hierarchy are proposed, based on the
same new approach of component interaction. The new metrics Depth Dependence
Tree - DDT and Breadth Dependence Tree - BDT are presented in Section 3.4. These
metrics help us to asses quality attributes of the system.

An example that illustrate the importance of the proposed metrics through the
evaluation of a PDA (Personal Digital Assistant) software is described in Section 4.

2. METRICS OVERVIEW IN CBD

Some proposals aim at establishing requisites and guidelines for CBD metrics,
both concerning individual components and component assemblies.

Several authors made proposals for the evaluation of component interfaces and
dependencies [1], [12]. The metrics follow a component-centric view of component
quality evaluation, assessing components in isolation.

Other metrics proposals follow the assembly-centric evaluation approach:

• Narasimhan and Hendradjaya [10] proposed metrics to assess component
integration density (a measure of the complexity of relationships with
other components);

• Hoek et al. [7] proposed metrics to assess service utilization in component
assemblies.

3. OUR APPROACH

This section presents our view of component assemblies as a graph. Starting
from the graph assembly we construct the dependence tree. Based on this ap-
proach we adapt some existing metrics from object-oriented design and define new
metrics for depth and breadth components hierarchy.

3.1. Formal Approach of Assembly.

Definition 3.1. An assembly is a binary relation denoted by DR = (C,D),D ⊆
C × C, where C is a set of components and D is the relation graphic that contains
the dependences between components. There is a component c0 ∈ C with a special
role, to start the system execution.

Definition 3.2. A dependence is a pair d = (c1, c2) ∈ D with the meaning that the
execution of c1 needs some services provided from c2 (in other words, c1 depends
of c2).



Metrics for component-based system development 145

We model a component-based system (an assembly of components) as a di-
rected graph (DR) in which the vertices are the components (the set C) and the
edges are the dependences (the set D) between components. In this way we
mapped each assembly to a directed graph. In the following we use the latter
view.

Remark 3.1. Additional conditions must be satisfied by an assembly:

(1) ∀c ∈ C ⇒ (c, c) /∈ D;
(2) (∀c1, c2, ...ci, ci+1, ...cn ∈ C, i = 1, n − 1, n ≥ 3 : (ci, ci+1) ∈ D) ⇒ c1 6= cn.

In figure 1 the left assembly satisfies the above conditions, while the right one
does not:

• ∃c3 ∈ C such that (c3, c3) ∈ D (condition (1) is violated);
• ∃c1, c2 ∈ C such that (c1, c2), (c2, c1) ∈ D (condition (2) is violated).

C1

C2

C3

C5

C4

C1

C2

C3

C5

C4

FIGURE 1. Additional assembly conditions

3.2. Assembly Dependences Tree. Using directed graph view of the assembly is
difficult to provide the depth and breath of the dependences between involved
components. A better view implies the transformation of the directed graph into a
tree. The dependences tree construction is described in detail in DTA and CDTA
algorithms.

Algorithm 1 Dependences Tree Algorithm (DTA)

1: CD = D; l = 1;
2: Identify the root - start node from the graph;
3: repeat
4: for each component c from level l do
5: for each d ∈ C : (c, d) ∈ D do
6: if ((c, d) ∈ CD) then
7: Add d in level (l + 1): c father of d;
8: CD = CD − {(c, d)};
9: end if

10: end for
11: end for
12: l = l + 1;
13: until CD = null



146 Camelia Şerban and Andreea Vescan

A short example for the Algorithm 1 can be visualized in Figure 2. The root
(level one) is the second component. In the next level are added three components
(third, forth and fifth) because the relations (2, 3), (2, 4) and (2, 5) are in CD set. In
the next step of the algorithm the components for the third level will be discovered:
all the components from the second level are in relations with other components
in the assembly. The third component is dependent of the forth and the firth com-
ponent and as a consequence in the forth level (from the third component) there
are draw two links to another forth and fifth component. We have denoted with
an index if more than one instance of a component appears.

C2

C3
C5

1

C4
1

C5
2

C4
2

C5
3

C1

C6
2

C6
1

C3
C5

1

C4
1

C5
2

C4
2

C5
3

C1 C6
11

C6
4

C6
3

C1C1
2

C5
4

C6
6

C6
5

C2

C3
C5

1

C4
1

C5
2

C4
2

C5
3

C1

C6
2

C6
1

C3
C5

1

C4
1

C5
2

C4
2

C5
3

C1 C6
1

DTA

CDTA
C1

C4

C3

C5

C6

C2

Dependencies

System

Structure

FIGURE 2. Construction of the dependences trees using DTA and
CDTA algorithms

To obtained an optimal tree that contains all the paths from the directed graph
representation, an additional algorithm that completes the tree is required. See Al-
gorithm 2. For example, the (2, 3, 4, 1, 6) chain is not included in the tree structure
(see Figure 2 - DTA).

Algorithm 2 Complete Dependences Tree Algorithm (CDTA)

1: for each leaf n of the tree do
2: Determine the node m equal to n that is situated on the lowest level.
3: Attach to node n the sub-tree of the m node, if exist.
4: end for
5: for each leaf n of the tree, previous added do
6: Determine the node m equal to n that is situated on the lowest level.
7: Attach to node n the sub-tree of the m node, if exist.
8: end for

Figure 2 - CDTA contains the new tree obtained after applying the CDTA al-
gorithm.



Metrics for component-based system development 147

3.3. Adapted Metric. In an object-oriented design, coupling is ”the interconnect-
edness between its pieces“ [2]. The declaration of an object of a remote class creates
a potential collaboration between the two classes. This is measured by metric CBO
[11]. If two classes are collaborators, then a value of one is added the CBO irre-
spective of how many messages flow between the two collaborators. We adapt
this metric for a component-based system.

We consider an assembly of components, DR = (C,D), where C is a set of
components and D is the relation graphic that contains the dependences between
components.

Definition 3.3. A component c1 is coupled with component c2 if (c1, c2) ∈ D.

Definition 3.4. Coupling Between Components (CBC) metric measures the num-
ber of components with witch a given component is coupled.

We are interested in coupling from the perspective of quality evaluation because
an excessive coupling plays a negative role on many external quality attributes:

• The reusability of components is low when the coupling between these is
high, because an entity is strong dependent on the context where it is used.
Normally a module (subsystem) should have a low coupling with the rest
of the modules.

• A high coupling between the different parts (modules) of a system has
a negative impact on the modularity (responsibilities of each part are not
clearly defined).

• The understandability and testability are also affected by high coupling be-
tween components.

3.4. New Defined Metrics. We consider an assembly of components, DR =
(C,D), where C is a set of components and D is the relation graphic that con-
tains the dependences between components, and the assembly dependences tree
described in Section 3.2.

In the following we will define two metrics related with this approach.

Definition 3.5. Depth Dependence Tree (DDT) metric. Let us consider a com-
ponent cn ∈ C and the corresponding elementary chain c0, c1, ..., cn, where c0 is
the root node. The metric value is DDT = n. In other words, DDT measures the
length chain dependences from a given component to the root.

Definition 3.6. Breadth Dependence Tree (BDT) metric represents the number of
chains dependences from the root to all the leafs.

We evaluate these metrics taking into account the impact on quality attributes.
From this point of view, a high value of metric DDT makes the component hard
to reuse in a different context. In addition, understandability, maintainability and
testability are also affected. The understanding of an entity requires a recursive
understanding of all the components that it depends. Moreover any change in a
component requires changes in all components that depend of this. A high value of
the metric affects maintainability and understandability. The system tends to become
increasingly complex.



148 Camelia Şerban and Andreea Vescan

4. EXAMPLE: PDA - PERSONAL DIGITAL ASSISTANT

In order to highlight the importance of our approach (regarding computation
and interpretation of the metrics values) we proposed the evaluation of PDA (Per-
sonal Digital Assistant) software. Possible improvements are made and a compar-
ative study between the first system and the one obtained after the improvements
is presented.

The initial system from Figure 3 has six main components. The Person compo-
nent is used to record data about a person (name, address, phone, birthday, etc.).
The Activity component is used to record data about an activity (subject, descrip-
tion, list of persons involved in the activity).

Notifications
3

Activities
2

Activity
5

PDA
1

Agenda
4

Person
6

C2

C3C2
1

C2
2

C3

C6
1

1
C4C5

1

2

C4

C6
2

C5
2

3
C4

C6
3

FIGURE 3. Personal Digital Assistant and the associated depen-
dences tree

The Agenda component contains a list of activities for each person, and the Ac-
tivities component manages the list of all activities and has operations concerning
activities. All the notifications about birthdays that are coming, deadline of an ac-
tivity and other important information are provided by the Notification component.
The PDA component is the start component of the system.

The CBC and DDT metrics values, computed for the initial PDA system are
presented in Table 1 and Table 2. The value of the BDT metric is 3.

TABLE 1. Values for the CBC metric

Component C1 C2 C3 C4 C5 C6

CBC metric value 2 1 2 1 1 0

Measurements interpretation. After analyzing the components hierarchy ob-
tained by applying the assembly dependences tree construction algorithm and
computing the metrics values, we have concluded that the components hierarchy
is slightly branched (three branches) and very deep (six levels). This implies a high
coupling at the system level as we can see from the DTT metric values.



Metrics for component-based system development 149

TABLE 2. Values for the DDT metric

Component C1 C21
C22

C3 C41
C42

C43
C51

C52
C61

C62
C63

DDT metric value 0 1 2 1 2 3 4 2 3 3 4 5

Taking into account the above conclusions, the system has been redesigned
where the Activities component encapsulates the Activity component and the
Agenda component contains the Person component (see Figure 4).

Notifications
3

Activities
2

PDA
1

Agenda
4

C2

C3C2
1

C2
2

C3

1
C4

2

C4

3
C4

FIGURE 4. Personal Digital Assistant and the associated depen-
dences tree for the second system

TABLE 3. Values for the CBC metric for the redesigned system

Component C1 C2 C3 C4

CBC metric value 2 1 2 0

TABLE 4. Values for the DDT metric for the redesigned system

Component C1 C21
C22

C3 C41
C42

C43

DDT metric value 0 1 2 1 2 2 3

The CBC and DDT metrics values, computed for the redesigned PDA system
are presented in Table 3 and Table 4. The value of the BDT metric is 3.

Conclusions. By decreasing the degree of coupling between components, in the
redesigned system we have obtained an increased reusability - the components
Activities and Agenda can be reusable in a different context. A better understand-
ability and testability are also obtained - it is much easier to follow the logic of the
system when the coupling between its constituents components is lower.



150 Camelia Şerban and Andreea Vescan

5. FUTURE WORK

Software metrics provide a quantitative means to control the quality of soft-
ware. A formal approach for defining metrics that quantifies quality attributes of
CBD was proposed. Our approach of component assemblies as a graph (trans-
formed in dependences tree) enabled us to define new metrics. In this context, the
main goal for defining metrics is to quantify different aspects that lead to system
quality improvements, by bridging the gap between qualitative and quantitative
statements.

Starting from this approach, we will focus our future work on developing new
methods and techniques to provide a mechanism for interpreting measurement
results and identifying those parts of the system that need improvements.

REFERENCES

[1] Boxall M. A. S. and Araban S., Interface Metrics for Reusability Analysis of Components, Australian
Software Engineering Conference, Melbourne, Australia, 2004

[2] Coad P. and Yourdon E., Object-Oriented Design, Prentice Hall, London, 2nd edition, 1991
[3] Crnkovic I. and Larsson M., Building Reliable Component-Based Software Systems, Artech House pub-

lisher, 2002
[4] Crnkovic I., Component-based Software Engineering - New Challenges in Software Development, Soft-

ware Focus, Ed. John Wiley & Sons, 2001
[5] Demeyer S., Ducasse S. and Nierstrasz O., Finding refactorings via change metrics, In Proceedings of

OOPSLA, ACM SIGPLAN Notices, pp. 166-178, 2000
[6] Fenton N. and Pfleeger L.S., Software Metrics: A Rigorous and Practical Approach, International

Thomson Computer Press, London, UK, 2nd edition, 1996
[7] Hoek A. v. D., Dincel E. and Medvidovic N., Using Service Utilization Metrics to Assess and Improve

Product Line Architectures, 9th IEEE International Software Metrics Symposium, Sydney, Australia,
2003

[8] Lorenz M. and Kidd J., Object-Oriented Software Metrics, Prentice-Hall Object-Oriented Series, En-
glewood Cliffs, NY, 1994

[9] McCabe T. J., Watson A. H., Software Complexity, Crosstalk, Journal of Defense Software Engineer-
ing, pp. 5 - 9, 1994

[10] Narasimhan V. L. and Hendradjaya B., A New Suite of Metrics for the Integration of Software Compo-
nents, The First International Workshop on Object Systems and Software Architectures, Australia,
2004

[11] Chidamber S. R. and Kemerer C. F., A Metrics suite for Object Oriented design, IEEE Transactions On
Software Engineering, Vol. 20, No. 6, pp. 476 - 493, 1994

[12] Washizaki H., Yamamoto H. and Fukazawa Y., A Metrics Suite for Measuring Reusability of Software

Components, 9th IEEE International Software Metrics Symposium, Sydney, Australia, 2003

BABEŞ-BOLYAI UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

M. KOGǍLNICEANU 1
400084 CLUJ-NAPOCA, ROMANIA

E-mail address: camelia@ubbcluj.ro
E-mail address: avescan@cs.ubbcluj.ro


