
CREATIVE MATH. & INF.
16 (2007), 151 - 158

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

An agent based user interface evaluation using aspect
oriented programming

ADRIANA M. TARŢA, GRIGORETA S. MOLDOVAN and GABRIELA ŞERBAN

ABSTRACT. Human-computer interaction design has an essential role in the success or failure of
a software product. The user interface reflects this aspect of the system. In this paper we propose a
new alternative for evaluating user interfaces using an agent-based approach. The Intelligent Agents
domain is an important research and development area in the field of Computer Science and of Ar-
tificial Intelligence, particularly [16]. It provides a new mechanism for problem solving and a new
user-computer interaction method. In our proposal, based on task models (task trees), agents are used
for monitoring and assisting users in interaction with the system. Task models [17] are used in the user
centered design context in order to give valuable information about the sequence of actions the user
must perform to accomplish his/her goals. In order to separate the agent from the evaluated software
system, we use a recently developed programming paradigm, Aspect Oriented Programming [6].

1. INTRODUCTION

1.1. Human-Computer Interaction. Nowadays, computers are used more and
more in performing current tasks. The widespread of computers has lead to a sit-
uation where users with different expertise level (novice, experts) have to perform
various tasks. The problem that arose was that systems having a good function-
ality and remarkable performances were avoided to be used by their users. Many
researches have been developed in order to determine why systems having a good
internal quality were considered not usable. The source of this attitude was lo-
cated at the user interface level, including the man-machine interaction design.
These problems have been considered subject of research in a recent discipline
called Human-Computer Interaction (HCI) [2]. HCI is a multidisciplinary field of
study, including knowledge from psychology, sociology, ethnography. A solution
proposed in order to solve the above mentioned problems is a new design para-
digm called User Centered Design. In this approach, the system design starts from
tasks the users should perform. Task analysis techniques have been taken from
psychology and adapted to system design. The task models built after the task
analysis process are a valuable source of information in the design process.

1.2. Agents. An agent ([12]) is anything that can be viewed as perceiving its en-
vironment through sensors and acting upon that environment through actions.

One of the task of an agent is to assist the user, achieving tasks in his place, or
teaching the user what he should do. An agent is characterized by:

Received: 15.09.2006. In revised form: 10.11.2006
2000 Mathematics Subject Classification. 68N99, 68P99, 68T99.
Key words and phrases. User interface evaluation, agents, aspect oriented programming.

151



152 Adriana M. Tarţa, Grigoreta S. Moldovan and Gabriela Şerban

• the architecture part, or the agent’s behavior - the action performed after any
given sequence of percepts;

• the program part, or the agent’s built-in part - the internal functionality of
the agent.

An artificial intelligent agent should be endowed with an initial (built-in) knowl-
edge and with the capability of learning. The learning capability ensures the agent’s
autonomy - the capability of deducing his behavior from its own experience.

The aim of Artificial Intelligence is to design the agent program: a function that
implements the agent mapping from percepts to actions, the intelligence of an agent
being included in his program part. At a given moment, the agent will choose
the best way of action, as he was programmed to do it. In situations in which
the program has incomplete information (knowledge) about the environment in
which the agent acts and lives, learning is the only way for the agent to acquire the
knowledge he needs in order to achieve his task.

So, an important task is to design the program part of an intelligent agent, and
even more, to implement the capability of learning.

1.2.1. Software Agents. Intelligent software agents are a new class of software that
act on behalf of the user to find and filter information, negotiate for services, easily
automate complex tasks, or collaborate with other software agents to solve com-
plex problems. Software agents ([10]) are a powerful abstraction for visualizing
and structuring complex software. Procedures, functions, methods, and objects
are familiar software abstractions that software developers use every day. Soft-
ware agents, however, are a fundamentally new paradigm unfamiliar to many
software developers. The central idea underlying software agents is that of del-
egation. The owner or user of a software agent delegates a task to the agent and
the agent autonomously performs that task on behalf of the user. The agent must
be able to communicate with the user to receive its instructions and provide the
user with the results of its activities. Finally, an agent must be able to monitor
the state of its own execution environment and make the decisions necessary for
it to carry out its delegated tasks. There are two approaches to building agent-
based systems: the developer can utilize a single stand-alone agent or implement
a multi-agent system. A stand-alone agent communicates only with the user and
provides all of the functionality required to implement an agent-based program.
Multiagent systems are computational systems in which several agents cooperate
to achieve some task that would otherwise be difficult or impossible for a single
agent to achieve. Agents within a multiagent system communicate, cooperate, and
negotiate with each other to find a solution to a particular problem.

1.2.2. Agent-Based Systems. An agent-based system is one in which the key ab-
straction used is that of an agent. An agent is a system that enjoys the following
properties ([18]):

• autonomy: agents encapsulates some state and make decisions about what
to do based on this state, without the direct intervention of human or oth-
ers;

• reactivity: agents are situated in an environment (a physical world, a user
via a graphical user interface, a collection of other agents, the INTERNET),



An agent based user interface evaluation using aspect oriented programming 153

are able to perceive this environment (through the use of potentially im-
perfect sensors), and are able to respond in a timely fashion to changes
that occur in it;

• pro-activeness: agents do not simply act in response to their environment,
they are able to exhibit goal-directed behavior by taking the initiative;

• social ability: agents interact with other agents via some kind of agent-
communication language ([3]).

Even if the discipline of intelligent agents has emerged largely from research in
Artificial Intelligence, the only intelligence requirement we generally make for the
agents is that they can make an acceptable decision about what action to perform
next in their environment, in time for this decision to be useful ([19]). Other re-
quirements for intelligence will be determined by the domain in which the agent
is applied: not all agents will need to be capable of learning, for example. Thus,
the application and exploitation of agent technology can be viewed, primarily, as a
computer science problem. Agents are simply software components that must be
designed and implemented in much the same way that other software components
are.

1.3. User Interface Evaluation. In order to provide useful systems, the companies
are conducting evaluation sessions for their products. There are many methods of
evaluating user interfaces (focus groups, guidelines review, user testing, etc.), most
of them being expensive. An alternative to these methods is considered the auto-
matic evaluation of the user interface, based on usability metrics, pattern matching
or task performance ([5]). Literature on user interface design frequently uses the
term usability. Several usability definitions exists, some of them being similar and
some of them being very different. ISO ([4]) defines usabilty as the extent to which
a computer system enables users, in a given context of use, to achieve specified
goals effectively and efficiently while promoting feelings of satisfaction. Usability
evaluation (UE) consists of methodologies for measuring the usability aspects of
a system’s user interface (UI) and identifying specific problems [2, 9]. Usability
evaluation is an important part of the overall user interface design process, which
consists of iterative cycles of designing, prototyping, and evaluating [2, 9]. Usabil-
ity evaluation is a process that entails many activities. Common activities include:

• Capture collecting usability data, such as task completion time, errors,
guideline violations, and subjective ratings.

• Analysis interpreting usability data to identify usability problems in the
interface.

• Critique: suggesting solutions or improvements to mitigate problems [5].

Usability testing with real participants is a fundamental usability evaluation
method ([9, 13] ). It provides an evaluator with direct information about how
people use computers and which are the problems of the interface being tested.
During usability testing, participants use the system or a prototype to complete a
predetermined set of tasks while the tester records the results of the participants
work. The tester then uses these results to determine how well the interface sup-
ports users task completion as well as other measures, such as number of errors
and task completion time. Automation has been mainly used in two ways within



154 Adriana M. Tarţa, Grigoreta S. Moldovan and Gabriela Şerban

usability testing: automated capture of user data and automated analysis of these
data according to some metrics or a model.

Many usability testing methods require the recording of the actions a user
makes while exercising an interface. This can be done by an evaluator taking
notes while the participant uses the system, either live or by repeatedly viewing
a videotape of the session: both are time-consuming activities. As an alternative,
automated capture techniques can automatically log user activity. An important
distinction can be made between information that is easy to record but difficult to
interpret (e.g., keystrokes) and information that is meaningful but difficult to au-
tomatically label, such as task completion. Automated capture approaches vary
with respect to the granularity of information captured.

Task-based approaches analyze discrepancies between the designer’s anticipa-
tion of the user’s task model and what a user actually does while using the system.
Evaluators can use this approach to compare user and designer behavior on spe-
cific tasks and to recognize patterns of inefficient or incorrect behaviors during
task completion. Task based approach can be used to detect additional patterns,
including immediate task cancellation, shifts in direction during task completion,
and discrepancies between task completion and task model.

1.4. Aspect Oriented Programming. Aspect oriented programming (AOP) is a
new programming paradigm that addresses the issues of crosscutting concerns [6].
A crosscutting concern is a feature of a software system whose implementation is
spread all over the system. Well-known examples of crosscutting concerns are log-
ging and security. In order to implement a crosscutting concern, AOP introduces
four new notions: joinpoint, pointcut, advice and aspect ([6]).

The aspects are integrated into the system using a special tool called weaver.
Nowadays, there are extensions that support AOP for well-known programming
languages (i.e., AspectJ for Java [1]) which are used in industry, too.

This paper proposes a new agent based user interface evaluation approach,
based on task models and aspect oriented programming.

The paper is structured as follows. The task analysis basic concepts and meth-
ods are discussed in Section 2. Our new approach in user interface evaluation
using agents and Aspect Oriented Programming is described in Section 3. Section
4 presents a small case study of our approach. Conclusions and future work are
given in Section 5.

2. TASK ANALYSIS AND MODELING

Before discussing the task analysis and modeling techniques, we have to under-
stand the meaning of task concept. A task is an activity that should be performed
in order to reach a goal. A goal is a desired modification of state or an inquiry to
obtain information on the current state of an object (system) [8].

Task analysis is the process of gathering data about the tasks people perform.
The process of structuring this data and gaining insight into the data is called task
modeling.

In the design of interactive systems the task analysis can be used with different
goals:



An agent based user interface evaluation using aspect oriented programming 155

• requirement analysis - when through a task analysis designers identify re-
quirements that should be satisfied in order to obtain an useful system;

• design of interactive applications - the information from task models is
used to better identify the interaction techniques and the presentations of
the application (in this case the modeling technique should provide tem-
poral information about the logical order of tasks);

• usability evaluation - the system task model and the user task model are
compared in order to get information about the matching between these
models; also, having a structured task model some techniques like KLM
(Keystroke Level Model) can be applied to get information about the time
needed to perform a task - this kind of approximation may be also used to
compare different task models addressing the same problem.

Task models are built after task analysis is performed. Task analysis aims to
identify the relevant tasks and how activities are performed currently.

The goal of task models is to identify useful abstractions highlighting the main
aspects that should be considered when designing interactive systems. The main
advantage of task models is that they represent the logical activities that an appli-
cation must support.

A task model in the design of an interactive system describes a set of activities
that users intend to perform while interacting with the system. Two types of task
models have been also identified: the system task model that provide information
about how the designed system requires tasks to be performed, and user task model
which is how users expect to perform their activities. It is desirable that these two
models be very similar, otherwise some usability problems will be present.

Task models are built for many different situations: usually, a task model is built
when designing a new application with the goal of obtaining precise information
about: the order of task performance, objects from the domain manipulated in the
task performance process, agents and roles responsible for the task performance,
events triggering task performance, preconditions and postconditions for task per-
formance. Also, a task model can be built for an existing application, in this case
the goal is to understand the underlying design, to analyze its limitations, and so-
lutions to overcome them. Task model can address the problem of designing an
entire application, or just a part of it.

Task models describe the semantic and temporal relations between the identi-
fied tasks. Task models are usually represented as task trees, describing the hierar-
chical structure of tasks ([8, 17]).

3. AN AGENT BASED APPROACH FOR USABILITY EVALUATION

In this section we present an agent based usability evaluation approach using
Aspect Oriented Programming (AOP). The proposed approach uses TAMO agent
in order to compare the user task model with the designer task model.

The environment in which TAMO agent is situated is a software environment.
The agent uses AOP in order to gather information about its environment.

In Figure 1 we propose the overall architecture of an agent-based system for
usability evaluation.



156 Adriana M. Tarţa, Grigoreta S. Moldovan and Gabriela Şerban

As Figure 1 shows, the component parts of the proposed system are:

• The software application (SA). It is a software system for which we intend to
evaluate its usability. The application has an associated task tree (TT) that
was developed by the UI designer of the application.

• The user (U). It is a person that uses SA in order to perform a predeter-
mined set of tasks.

• The agent (TAMO). It is a software agent whose goal is to monitor the
user’s actions and to compare them with TT in order to be able to assist
the user. The initial knowledge of the agent is the TT associated with SA.
The perceptions of TAMO are the actions that the user U performs on SA.
The program part of TAMO consists in comparing the two task trees. In the
general case, the action of the agent consists in sending the results of the
comparison to the Learning module. TAMO can be endowed with the ca-
pability of learning, in which case TAMO agent becomes an interface agent
([7]), a kind of personal assistant of the user.

• The Learning module (LM). It is the module of the software system that, in
a general architecture, learns from the users’ behavior and sends a feedback
to the UI evaluator. It can be a learning agent.

In the current version of our evaluation system, the Learning module is not in-
cluded, yet. The action that TAMO performs is to save the results of the compari-
son on a storage device. We are currently working on adding the Learning module,
that will grow the accuracy of the evaluation results.

4. A CASE STUDY

In order to test our system we have developed a small application for family
budget management having the following functionalities: adding an expense/ in-
come, viewing expenses/incomes for a period of time and computing the balance
for a period of time. An income/expense has a date, a value, a category, and a
family member. The functionalities are available using menus or toolbar buttons.



An agent based user interface evaluation using aspect oriented programming 157

The architecture of the agent based system that we propose for usability evalu-
ation is the one described in Figure 1. The Learning module is not included in the
current version of our system.

The AOP module is used for capturing user’s events: mouse clicking, text enter-
ing, menu choosing, etc. These events are received by TAMO agent, that will re-
build from them the task the user has performed, creating the User Task Tree (UTT).

TAMO also has an initial knowledge, that is the Designer’s Task Tree (DTT), as
shown in Figure 2. In our implementation, the initial knowledge is stored in an
XML file.

The evaluation module of the agent, that gives its behavior, makes a comparison
between UTT and DTT. It verifies if UTT is a subtree of DTT and it saves the
results of the comparison on a storage device.

5. CONCLUSIONS AND FURTHER WORK

We have presented in this paper a new agent based approach for usability evalua-
tion and we have proposed the architecture of an usability evaluation system. The
described system contains an agent, called TAMO, that has an evaluation module
for comparing the user and designer’s task models.

Further work can be done in the following directions:

• To add the learning module to our current version of the system. This
learning module will grow the accuracy of the usability evaluation system.

• To add the learning capability to TAMO agent, in order to assist the user
in performing his/her tasks (if needed).

• To define quality measures for evaluating the obtained usability results.
• To apply our usability evaluation system to complex software systems.
• To compare the results obtained by our system with the results of other

usability evaluation approaches: SUS ([15]), SUMI ([14]).



158 Adriana M. Tarţa, Grigoreta S. Moldovan and Gabriela Şerban

REFERENCES

[1] “AspectJ Project,” http://eclipse.org/aspectj/

[2] Dix A., Finlay J., Abowd G.D. and Beale R., Human-Computer Interaction, 3th edition, Pearson, Pren-
tice Hall, 2004

[3] Genesereth M. R. and Ketchpel S. P., Software agents, Communications of the ACM, 37(7), 1994, pp.
48-53

[4] ISO 9126, Software product evaluation - Quality characteristics and guidelines for their use
[5] Ivory M. and Hearst M., The State of the Art in Automating Usability Evaluation of User Interfaces,

ACM Computing Surveys, Vol. 33, No. 4, December 2001, pp. 470–516
[6] Kiczales G., Lamping J., Menhdhekar A., Maeda C., Lopes C., Loingtier J.M. and Irwin J., Aspect-

Oriented Programming, Proceedings European Conference on Object-Oriented Programming, Vol. 1241,
Springer-Verlag, 1997, pp. 220–242

[7] Maes P., Social interface agents: Acquiring competence by learning from users and other agents, (Technical
Report SS-94-03), AAAI Press, 1994, pp. 71–78

[8] Mori G., Paternò F. and Santoro C., CTTE: Support for developing and Analyzing Task Models for
Interactive System Design, IEEE Transactions on Software Engineering, Vol. 28, No. 9, 2002

[9] Nielsen J., Usability Engineering, Boston, MA: Academic Press, 1993
[10] Nwana H. S., Software Agents: An Overview, Knowledge Engineering Review, 1996
[11] Paternò F., Model-based Tools for Pervasive Usability, Technical Report, University of Pisa (Italy), 2004
[12] Russell S.J. and Norvig P., Artificial intelligence. A modern approach, Prentice-Hall International, 1995
[13] Shneiderman B., Designing the user interface: strategies for effective human-computer interaction,

Addison-Wesley Longman Publishing Co., Inc., 1986
[14] SUMI, sumi.ucc.ie.
[15] SUS, www.usability.serco.com/trump/documents/Suschapt.doc.
[16] Weiss G. (Ed.), Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence, MIT

Press, 1999
[17] van Welie M., Task-based User Interface Design., PhD Thesis, Vrije Universiteit Amsterdam, 2001
[18] Wooldridge M. and Jennings N. R., Intelligent Agents. Theory and practice, The Knowledge Engi-

neering Review, 10(2), 1995, pp. 115–152
[19] Wooldridge M., Agent-Based Software Engineering, Mitsubishi Electric Digital Library Group, Lon-

don, 1997

BABEŞ-BOLYAI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

M. KOGALNICEANU 1
400084 CLUJ-NAPOCA, ROMANIA

E-mail address: adriana@cs.ubbcluj.ro
E-mail address: grigo@cs.ubbcluj.ro
E-mail address: gabis@cs.ubbcluj.ro


