
CREATIVE MATH. & INF.
16 (2007), 159 - 165

Dedicated to Professor Ioan A. RUS on the occasion of his 70
th anniversary

Overview and architecture of a component modeling
tool

ANDREEA VESCAN and SIMONA MOTOGNA

ABSTRACT. Component-based development (CBD) advocates the acquisition, adaptation, and in-
tegration of reusable software components to rapidly develop and deploy complex software systems
with minimum engineering effort and resource cost.

The paper first presents previous results regarding component-based development and describes
the used architecture.

Further, the paper provides the steps (scenarios) when using a tool for developing a component-
based system by assembling components: finding and selecting components or create new compo-
nents; adapting components; syntactic system assembling, providing data and control flow; analyzing
composition behavior, and deploying the system.

The previous work done by the authors is also described and an analysis about how to integrate
them into the tool development is done.

1. INTRODUCTION

Component-based software development (CBSD) or component-based software
engineering (CBSE) is concerned with the assembly of pre-existing software com-
ponents into larger pieces of software. Underlying this process is the notion that
software components are written in such a way that they provide functions com-
mon to many different systems. Borrowing ideas from hardware components, the
goal of CBSD is to allow parts (components) of a software system to be replaced
by newer, functionally equivalent, components.

The idea is not new. Componentizing software had been suggested by McIlorys
[10] as a way of tackling the software crisis, yet only in the last decade or so has
the idea of component-based software development taken off. Nowadays there
is an increasing market place for Commercial Off-The-Shelf (COTS) components,
embodying a buy, don’t build [1] approach to software development. The promise
of CBSD is a reduction in development costs: component systems are flexible and
easy to maintain due to the intended plug-and-play nature of components.

Related projects. “Relatively little has been done to scale up analysis techniques
for the purpose of providing automated analysis tools for component framework.”
[Cadena Project]

Received: 20.09.2006. In revised form: 11.01.2007
2000 Mathematics Subject Classification. 68N19, 68Q60.
Key words and phrases. Component-based systems, formal models, component models.

159

160 Andreea Vescan and Simona Motogna

Cadena [2] is a research project (An Integrated Development, Analysis, and Ver-
ification Environment for Component-based Systems) that is currently being de-
veloped by faculty, staff, and students in the SAnToS Lab at Kansas State Univer-
sity. Cadena is an Eclipse-based extensible integrated modeling and development
framework for component-based systems.

Rapide (The Stanford Rapide Project) [13] is designed to support component-
based development of large, multi-language systems by utilizing architecture defi-
nitions as the development framework. Rapide allows gradual refinement of archi-
tectures into products, and supports testing and maintenance based on automated
comparison with formal standard architectures.

Component Composition Software Kit (CCSK, 2004 master thesis [6]) is imple-
mented as a simple integrated development environment. With CCSK we are able
to check if given components can be compose in order to develop a new system
and to provide all possibilities of composing components.

2. TOOL OVERVIEW AND ARCHITECTURE

The tool that we want to construct will have, in principle, two important goals:
to build the descriptive model in order to predict how the system could work,
and to automatically perform certain checkings on this model, such that several
situations may be avoided at an early stage in application development.

2.1. Features & Functionalities. Our aim is to develop a model for component
based systems such that consistency and efficiency can be verified before execu-
tion. There are two issues which need to be addressed where a software system is
to be constructed from a collection of components:

• Component integration - the mechanical process of wiring components to-
gether. There has to be a way to connect the components together.

• (Behavior) Component composition - we have to get the components to do
what we want. We need to ensure that the assembled system does what is
required. The constituent components must not only plug together, they
must perform well together.

In CBSD composition is a central issue, since components are supposed to be
used as building blocks from a repository and assembled or plugged together into
larger blocks or systems. The composition language should have suitable seman-
tics and syntax that are compatible with those of components in the component
model.

There are two points of views of composition: syntactic (structural) - to describe
dependencies between components and semantic (behavioral) - to simulates system
execution and observe behavior.

2.2. Use cases. The main idea of the component-based approach is building sys-
tems from pre-existing components. This assumption has several consequences
[5] for the system lifecycle. First, the development processes of component-based
systems are separated from development processes of the components; the compo-
nents should already been developed and possibly used in other products when

Overview and architecture of a component modeling tool 161

the system development process starts. Second, a new separate process will ap-
pear: finding and evaluating the components. Third, the activities in the processes
will be different from the activities in a noncomponent- based approach; in system
development the emphasis will be on finding the proper components and verify-
ing them, and for the component development, design for reuse will be the main
concern.

The waterfall model adapted to component-based development. The waterfall model
was modified to emphasize component-centric activities [4].

Figure 1 shows the waterfall model and the meaning of the phases. Identifying
requirements and a design in the waterfall process is combined with finding and
selecting components. The design includes the system architecture design and
component identification/selection.

Requirements

1. Find 2. Select

3. Create

4. Adapt 4. Test 5. Deploy 6. Replace

Design Implementation Test Release Maintenance

FIGURE 1. The development cycle compared with the waterfall model.

The use cases are developed having different centric points: components, flow,
assembly and deploy.

The use cases included into the steps of the development process of a
component-based system are:

• Components
– Find & select or create new. Find components which may be used in the

system. All possible components are listed here for further investiga-
tion. Select the components which meet the requirements of the sys-
tem. Alternatively, create a proprietary component to be used in the
system. In a component based development process this procedure is
less attractive as it requires more efforts and lead-time.

– Adapt. Adapt the selected components so that they suit the exist-
ing component model or requirement specification. Some compo-
nents would be possible to directly integrated in to the system, some
would be modified through parametrization process, some would
need wrapping code for adaptation, etc.

• Flow - Data flow (by transitions) and Control flow (tasks to be executed, and
in what order).

162 Andreea Vescan and Simona Motogna

• Assembly - Syntactic integration of components into system based on
data/control flow. By syntactically correct model we mean no semantic
involvement, but just the way to connect the components together, the
mechanical process of “wiring” components together (component integra-
tion).

• Deploy & maintenance. Compose and deploy the components using a frame-
work for components. Replace earlier with later versions of components.
This corresponds to system maintenance. Bugs may have been eliminated
or new functionality added.

2.3. Architecture. The origins of software architecture as a concept was first iden-
tified in the research work of Edsger Dijkstra in 1968 and David Parnas in the
early 1970ś. The scientists emphasized that the structure of a software system mat-
ters and getting the structure right is critical. The study of the field increased in
popularity since the early 1990s with research work concentrating on architectural
styles (patterns), architecture description languages, architecture documentation,
and formal methods.

The software architecture [14] of a system comprises its software components,
their external properties, and their relationships with one another. The term
also refers to documentation of a system’s software architecture. Documenting
software architecture facilitates communication between stakeholders, documents
early decisions about high-level design, and allows reuse of design components
and patterns between projects.

An architecture, in our view, is a module containing a set of components (Collec-
tion of interfaces), a set of connection rules that defines the communication between
the components (Collection of interface connections), and a set of constraints that de-
fine conditions for valid behavior (A set of constraints).

2.4. Inside algorithms. Algorithms were already developed to support
component-based development. These algorithms address the component
integration issues and also model construction and execution.

Table 1 contains an overview of already developed algorithms grouped by com-
ponent integration issues and by model construction and model execution.

The scope of the algorithms from [7], [8] was to construct all the component-
based systems from a set of given components, as a need for the first step of the
assembly (Component integration). See Section 2.4.1. The models are constructed
based on the architecture (component specification and communication between
components) from [11], [12].

The second step of the assembly (Behavior Component composition) was accom-
plished by the algorithm from [9]. The execution of the obtained assembly consists
of sequences (Operations, ComponentsSet). See Section 2.4.2 for details.

2.4.1. Model construction properties. The resulting final models are checked from
distinctive perspective - the properties: lost data (a data is lost if no other com-
ponent from the system is using it) and just one provider/port (the data for each
inport must be received by only one provider). The “reverse” propagation of data
(the output data of a component is propagated to different inports) is allowed:

Overview and architecture of a component modeling tool 163

TABLE 1. Developed algorithms, addressing Component Integra-
tion (MI), Model Construction (MC) and Model Execution(ME)

Issue Paper Algorithm

MC ICAM3 (2002) A formal model for components
MC ICCC (2004) Component system checking using composi-

tional analysis
CI ICAM4 (2004) Automata-based compositional analysis of

component systems
CI ZAC (2004) A formal model for component composition
ME ZAC (2005) Specification, construction and execution of a

component-based model
CI Studia (2006) Automata-based component composition

analysis
MC MaCS (2006) Syntactic analysis of component composition
MC EUROMICRO

32th (2006)
Syntactic automata-based component compo-
sition

MC SYNASC
(2006)

Restraint order component model execution

component C3 distributes the data d3 to C2 and C6 component. See Figure 2 for
details.

d2

d3

d6

d8

d1

d7

d
6

d5

C2

C
4

C5

d
3

C1

d2

C3

C6

d4
d5

FIGURE 2. A model with lost data (d4, d5) and with more than one
data provider/inport (d6 for C5 component).

2.4.2. Model execution. The execution of the obtained component-based system is
composed of sequences of the form

({Op1, C1}, {Op2, C2}, ..., {operations, components}),

where for each i ≥ 1, Opi is a subset of possible operations and Ci is a subset of
components ready for execution.

164 Andreea Vescan and Simona Motogna

The possible operations are:

• propagation - this rule moves values that have been generated by a com-
ponent along connections from the component’s outport to other compo-
nents;

• evaluation - the component function is evaluated and the result is passed to
the output of the component.

If at a given time, both types of operation can be performed, the propagation
operation is chosen. We have developed two types of execution when many eval-
uation operations are possible: randomly chosen a component and restraint order
execution.

3. FUTURE WORK

We have presented in this paper an analysis of a new component modeling tool
that we are going to develop. A very systematic and detailed analysis of the func-
tionalities, architecture and algorithms was performed in this article.

We have also provided a short analysis of our previous developed algorithms
that will help us to develop the tool. These algorithms address the component
integration issues and also model construction and execution.

Further work can be done in the following directions:

• Building a tool - to incorporate such functionalities.
• Checking if the build model supports a given sequence of tasks.
• Building a component-based system that contains a given sequence of

tasks.
• Improving the assembly analysis (by model execution) with one more in-

port type.

REFERENCES

[1] F. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, Computer, Volume 20,
Issue 4, 1987, pp. 10 - 19

[2] Cadena Project, http://cadena.projects.cis.ksu.edu/
[3] Ivica Crnkovic and Magnus Larsson, Building Reliable Component-Based Software Systems, Artech

House publisher, 2002
[4] Ivica Crnkovic, Component-based Software Engineering - New Challenges in Software Development, Soft-

ware Focus, Ed. John Wiley & Sons, 2001
[5] Ivica Crnkovic, Stig Larsson and Michel Chaudron, Component-based Development Process and Com-

ponent Lifecycle, 27th International Conference Information Technology Interfaces (ITI), 2005
[6] Andreea Fanea, Software Specification Methods, Master Thesis, Computer Science Department,

Babeş-Bolyai Univeristy, 2004
[7] Andreea Fanea and Simona Motogna, A Formal Model For Component Composition, Proceeding

of the Symposium “Zilele Academice Clujene”, 2004, pp. 160-167
[8] Andreea Fanea, Simona Motogna and Laura Dioşan, Automata-based component composition analysis,

Studia Universitas Babeş-Bolyai, Seria Informatica, Volume 51, Number 1, 2006, pp. 13-20
[9] Andreea Fanea, Specification, construction and execution of a component-based model, In Proceed-

ing of the Symposium “Zilele Academice Clujene”, 2005, pp. 87-92
[10] McIlroys M.D., Mass Produced Software Components, In P. Naur and B. Randell, editors, Software

Engineering, Scientific Affairs Division, NATO, 1969, pp. 138-155

Overview and architecture of a component modeling tool 165

[11] Simona Motogna, Petraşcu D. and Pârv B., Automata-Based Compositional Analysis of Component Sys-
tems. Design and Implementation Issues, In Fourth International Conference on Applied Mathematics
(ICAM4), 2004, pp. 197-203

[12] Pârv B., Simona Motogna and Petraşcu D., Component system checking using compositional analysis,
In Proceedings of the International Conference on Computers and Communications, 2004, pp.
325-329

[13] Rapide Project, http://pavg.stanford.edu/rapide/
[14] Wikipedia, http://en.wikipedia.org/

BABEŞ-BOLYAI UNIVERSITY

COMPUTER SCIENCE DEPARTMENT

M. KOGǍLNICEANU 1
400084 CLUJ-NAPOCA, ROMÂNIA

E-mail address: camelia@ubbcluj.ro
E-mail address: avescan@cs.ubbcluj.ro

