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Anticommutativity in the ring of square matrices of
the second order with complex entries

CRISTINEL MORTICI

ABSTRACT. The main purpose of this paper is to solve the equation AB+BA = 0 in the ring M2(C)
of square matrices of the second order with complex entries. The discussion is made by considering the
cases when A and B are inversable or singular. The methods used in each case are completely different
and instructive. Considerations about matrices which commutes and finally an application are also
given.

1. INTRODUCTION

We say that a pair (A, B) of two matrices A, B ∈ M2(C) is an anticommuta-
tive pair if AB = −BA. Obviously, the problem of finding anticommutative pairs
(A, B) is equivalent with the problem of solving the equation

AB + BA = 02.

We denote the zero matrix, respective the unity matrix by

02 =
(

0 0
0 0

)
, I2 =

(
1 0
0 1

)
.

For a matrix A =
(

a b
c d

)
∈ M2 (C) we denote by

detA = ad − bc , trA = a + d

the determinant of A, respective the trace of A. We also define

A∗ =
(

d −b
−c a

)

the adjoint of the matrix A, which satisfies

A · A∗ = A∗ · A = (detA) · I2.

For every matrices X, Y ∈ M2 (C) it holds

tr(XY ) = tr(Y X).

For each matrix A ∈ M2 (C) it can be easily established the relation

A2 − trA · A + detA · I2 = 02

also called Hamilton-Cayley relation.
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As a direct consequence, to each matrix A ∈ M2 (C) we can inductively assign
two sequences (an)n≥1 , (bn)n≥1 of complex numbers for which

An = anA + bnI2 , ∀ n ≥ 1.

Case n = 1 is trivial while case n = 2 follows from Hamilton-Cayley relation (e. g.
[1], [2]).

Next we give the following

Lemma 1.1. Let A, B ∈ M2 (C) be two matrices, not of the form λI2, with λ ∈ C. If
AB = BA, then

B = αA + βI2,

for some complex numbers α, β, α �= 0.

Proof. If denote A =
(

a b
c d

)
, B =

(
x y
z t

)
, then from AB = BA we derive

y

b
=

z

c
=

x − t

a − d
= α

(with the convention that if a denominator is zero, then the corresponding denu-

merator is also zero). At least one of the fraction is not
0
0
, because b, c, a− d cannot

be all zero. Thus α is well defined. It follows

y = αb , z = αc , t = αd + β , x = αa + β,

with β = t − αd. Finally,

B =
(

x y
z t

)
=

(
αa + β αb

αc αd + β

)
= αA + βI2.

�

We also give

Lemma 1.2. The solutions of the equation

X2 = −I2 , X ∈ M2 (C) (1.1)

are X = iI2, X = −iI2 and any matrix of the form

X =
(

a b
c −a

)
,

with a2 + bc = −1.

Proof. With the notation X =
(

a b
c d

)
, the given equation can be reduced to the

following system ⎧⎪⎪⎨
⎪⎪⎩

a2 + bc = −1
b(a + d) = 0
c(a + d) = 0
d2 + bc = −1
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If a + d �= 0, then b = c = 0. Thus X =
(

a 0
0 d

)
, with a2 = d2 = −1. If a + d = 0,

then X =
(

a b
c −a

)
, with a2 + bc = −1. �

2. THE RESULTS

If two matrices A, B ∈ M2 (C) commutes, AB = BA then

AmBn = BnAm

for all positive integers m, n. Moreover, the reciprocal part is true in the sense of
the following

Lemma 2.1. Let A, B ∈ M2 (C) be two matrices. Assume that for some positive integers
m, n we have AmBn = BnAm and the matrices Am and Bn are not of the form λI2,
λ ∈ C. Then AB = BA.

Proof. As we stated, we can define sequences (an)n≥1 , (bn)n≥1 , (cn)n≥1 , (dn)n≥1

of complex numbers such that

Ak = akA + bkI2 , Bk = ckB + dkI2,

for all positive integers k. From the hypothesis, am �= 0 and cn �= 0. Then

AmBn = BnAm ⇒
⇒ (amA + bmI2) (cnB + dnI2) = (cnB + dnI2) (amA + bmI2) ⇒

⇒ amcn(AB − BA) = 02.

Hence AB = BA, because amcn �= 0.
With these preparations, we can solve the equation

AB + BA = 02. (2.1)

�

First we assume that both matrices A and B are inversable.

Theorem 2.1. The solutions of the equation AB + BA = 02, with A, B ∈ M2 (C)
inversable, are

A =
(

x y
z −x

)
, B = A−1 ·

(
a b
c −a

)
,

where x, y, z, a, b, c are complex numbers with x2 + yz �= 0, a2 + bc �= 0 and 2ax + bz +
cy = 0.

Proof. We can assume without loss of generality that

detA = detB = 1.

Indeed, this can be made by replacing A with
1

detA
· A and B with

1
detB

· B. We

have
tr(AB + BA) = 0 ⇒ tr (AB) + r (BA) = 0

and from tr (AB) = tr (BA) , we obtain

tr(AB) = 0.
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We also have
det(AB) = detA · B = 1

and from Hamilton-Cayley relation we deduce

(AB)2 = −I2. (2.2)

Now we can use Lemma 1.2 to solve the equation (2.1). If X denotes any solution
of the equation (1.1), then

AB = X ⇒ B = A−1X.

With B = A−1X, the equation (2.1) becomes

A · A−1X + A−1X · A = 02.

By multiplying with A to the left, we derive

AX + XA = 02. (2.3)

Cases X = iI2 and X = −iI2 are not acceptable, because A is inversable. In
consequence, if

A =
(

x y
z t

)
, X =

(
a b
c −a

)

with x, y, z, t, a, b, c ∈ C, a2 + bc = −1, then the condition (2.3) becomes(
x y
z t

) (
a b
c −a

)
+

(
a b
c −a

) (
x y
z t

)
= 02.

In terms of linear systems, we obtain⎧⎪⎪⎨
⎪⎪⎩

2ax + bz + cy = 0
b(t + x) = 0
c(t + x) = 0
−2at + bz + cy = 0

.

If t + x �= 0, then b = c = 0. From the first and the last equation of the system we
deduce a = 0. This is impossible, because a2 + bc = −1.

In consequence, t + x = 0. In this case, the first and the last equation of the
system are equivalent. It follows

A =
(

x y
z −x

)
, X =

(
a b
c −a

)
,

for any x, y, z, t, a, b, c ∈ C, satisfying

a2 + bc = −1 , 2ax + bz + cy = 0.

The general solution of the given equation is (ζA, μB) , where ζ, μ ∈ C∗. �

Theorem 2.2. The solutions of the equation AB + BA = 02, A, B ∈ M2 (C) , with A
inversable, B singular, B �= 02 are

A =
(

a b
c −a

)
, B =

(
x y
z −x

)
,

where a, b, c, x, y, z are complex numbers with x2 + yz = 0, a2 + bc �= 0 and 2ax + bz +
cy = 0.
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Proof. By multiplying the given equation with B to the right, then with B to the
left, we obtain

(AB + BA)B = 02 ⇒ AB2 + BAB = 02

B(AB + BA) = 02 ⇒ BAB + B2A = 02.

Hence
AB2 = B2A. (2.4)

If A and B2 are not of the form λI2, λ ∈ C, then AB = BA, according to the Lemma
2.1. But AB + BA = 02, so

AB = BA = 02.

By multiplying with A−1, we obtain B = 02.
If A = λI2, λ �= 0, then easy B = 02.
If B2 = λI2, then λ = 0, because B is assumed to be singular. From B2 = 02 and

B �= 02 it results trB = 0. If denote

A =
(

a b
c d

)
, B =

(
x y
z −x

)
,

with a, b, c, d, x, y, z ∈ C, x2 + yz = 0, then(
a b
c d

) (
x y
z −x

)
+

(
x y
z −x

) (
a b
c d

)
= 02.

Therefore ⎧⎪⎪⎨
⎪⎪⎩

2ax + cy + bz = 0
y(a + d) = 0
z(a + d) = 0
−2dx + cy + bz = 0

.

If a + d �= 0, then y = z = 0 and x = 0. It follows B = 02.
If a + d = 0, then the previous system becomes equivalent with

2ax + cy + bz = 0.

�

Finally, we consider the case when A, B are both singular.

Theorem 2.3. Let A, B ∈ M2 (C) be singular such that AB + BA = 02. Then A = 02

or B = 02 or
B = λA∗

for some complex number λ.

Proof. We assume that A �= 02 and B �= 02. Let us denote

A =
(

xy xz
yt zt

)
, B =

(
mn mp
nq pq

)
,

where x, y, z, t, m, n, p, q are complex numbers. Then(
xy xz
yt zt

) (
mn mp
nq pq

)
+

(
mn mp
nq pq

) (
xy xz
yt zt

)
= 02
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is equivalent with the system⎧⎪⎪⎨
⎪⎪⎩

my(nx + pt) + nx(my + qz) = 0
mp(xy + zt) + xz(mn + pq) = 0
yt(mn + pq) + nq(xy + zt) = 0
qz(nx + pt) + pt(my + qz) = 0

.

By adding the first and the last equation of the system, we obtain

(my + qz)(nx + pt) = 0

and we will prove that my + qz = 0 and nx + pt = 0.
In this sense, let us suppose by contrary that my + qz = 0 and nx+ pt �= 0. From

the last equation of the system, we derive qz = 0 and so my = 0.
If y = z = 0, then A = 02 and if m = q = 0, then B = 02.
If for example q = y = 0, then from the second equation of the system, we

obtain
mz(nx + pt) = 0 ⇒ mz = 0.

If m = 0, then B = 02 and if z = 0, then A = 02.
Now we are in case

my + qz = 0 , nx + pt = 0. (2.5)

This conditions are sufficient for variables x, y, z, t, m, n, p, q to satisfy the system.
If x = t = 0, then A = 02 so we can assume that x �= 0. Similarly, if y = z = 0,

then A = 02, so we can assume that y �= 0. Under these assumptions,

m = −qz

y
, n = −pt

x
,

accordingly to (2.5). Finally, with these values for m and n, we derive

B =
pq

xy
·
(

zt −xz
−ty xy

)
=

pq

xy
· A∗.

�

3. APPLICATIONS

The above theoretical results can be successfully used to establish other theo-
retical results or in practical problems. To show this, we will consider here the
problem of solving the equation

AY + Y A = f , Y ∈ M2 (C) , (3.1)

where A ∈ M2 (C) and f ∈ M2 (C) are given. In the previous section of our work,
we have solved this kind of equations in case f = 02. As in theory of differential
equations, the equation (3.1) is close related with the corresponding homogeneous
equation

AX + XA = 02. (3.2)

Indeed, we assert that the problem of solving equation (3.1) can be reduced to an
easier problem of finding a particular solution, as we can see from the following
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Theorem 3.1. Let there be given two matrices A, f ∈ M2 (C) . Assume that Y0 ∈ M2 (C)
is a solution the equation (3.1). Then every solution Y ∈ M2 (C) of the equation (3.1) can
be written as

Y = Y0 + X,

where X ∈ M2 (C) is a solution of the homogeneous equation (3.2).

Proof. First,

AY + Y A = A (Y0 + X) + (Y0 + X)A =

= (AY0 + Y0A) + (AX + XA) = f + 02 = f.

Reciprocally, from the fact that Y0 is solution of (3.1), we deduce

AY0 + Y0A = f.

If Y is another solution, then

AY + Y A = f

and by substraction, we obtain

A(Y − Y0) + (Y − Y0)A = 02.

If denote X = Y − Y0 then Y = Y0 + X and X is solution of (3.2). �

Further in case f = I2, we completely solve the equation

AY + Y A = I2. (3.3)

Also here we need a discussion relative to detA. First, if A is inversable, then a
particular solution of (3.3) is

Y0 =
1
2
· A−1.

From Theorems 2.1-2.2 it results the following

Theorem 3.2. Let there be given a matrix A =
(

a b
c −a

)
∈ M2 (C) , with a2 +bc �= 0

and let Y ∈ M2 (C) be a solution of the equation (3.3). Then

Y = A−1 ·

⎛
⎜⎝

1
2

+ x y

z
1
2
− x

⎞
⎟⎠ ,

for some complex numbers x, y, z satisfying x2 + yz �= 0 and 2ax + bz + cy = 0, or

Y =

⎛
⎜⎝

1
2

+ u v

w
1
2
− u

⎞
⎟⎠ ,

for some complex numbers u, v, w satisfying u2 + vw = 0 and 2au + bw + cv = 0.
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The case when A is singular follows from Theorem 2.3.

Let A =
(

a b
c −a

)
∈ M2 (C) , A �= 02, be with a2 + bc = 0. It follows b �= 0 or

c �= 0, because A �= 02. Now it can be easily verified that a particular solution of
(3.3) is

Y0 =

⎛
⎝ 0 0

1
b

0

⎞
⎠ , if b �= 0

and

Y0 =

⎛
⎝ 0

1
c

0 0

⎞
⎠ , if c �= 0.

We can state the following

Theorem 3.3. Let there be given A =
(

a b
c −a

)
∈ M2 (C) , A �= 02, with a2 +bc = 0

and assume without loss of generality that b �= 0. Let Y ∈ M2 (C) be a solution of the
equation (3.3). Then

Y =

⎛
⎝ 0 0

1
b

0

⎞
⎠ + λA∗,

for some complex number λ.
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