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Some stability and strong convergence results for the
Jungck-Ishikawa iteration process

M. O. OLATINWO

ABSTRACT. In this paper, we shall establish some stability results as well as some strong conver-
gence results for a pair of nonselfmappings using a newly introduced Jungck-Ishikawa iteration pro-
cess and some general contractive conditions. Our results are generalizations and extensions of the
results in some of the references listed in the reference section of this paper as well as of some other
analogous ones in the literature.

1. INTRODUCTION

Let (E, d) be a complete metric space and T : E → E a selfmap of E. Suppose
that FT = { p ∈ E | Tp = p } is the set of fixed points of T.
There are several iteration processes in the literature for which the fixed points of
operators have been approximated over the years by various authors. In a com-
plete metric space, the Picard iteration process {xn}∞n=0 defined by

xn+1 = Txn, n = 0, 1, · · · , (1.1)

has been employed to approximate the fixed points of mappings satisfying the
inequality relation

d(Tx, Ty) ≤ αd(x, y), ∀ x, y ∈ E and α ∈ [0, 1). (1.2)

Condition (1.2) is called the Banach’s contraction condition. Any operator satisfying
(1.2) is called strict contraction. Also, condition (1.2) is significant in the celebrated
Banach’s fixed point Theorem [2].

In the Banach space setting, we shall state some of the iteration processes gen-
eralizing (1.1) as follows: For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTxn, n = 0, 1, · · · , (1.3)

where {αn}∞n=0 ⊂ [0, 1], is called the Mann iteration process (see Mann [19]).
For x0 ∈ E, the sequence {xn}∞n=0 defined by

xn+1 = (1− αn)xn + αnTzn

zn = (1− βn)xn + βnTxn

}
n = 0, 1, · · · , (1.4)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1], is called the Ishikawa iteration
process (see Ishikawa [11]).
The following is the iteration process introduced by Singh et al [38] to establish
some stability results: Let S and T be operators on an arbitrary set Y with values
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in E such that T (Y ) ⊆ S(Y ). S(Y ) is a complete subspace of E. Then, for x0 ∈ Y,
the sequence {Sxn}∞n=0 defined by

Sxn+1 = (1− αn)Sxn + αnTxn, n = 0, 1, · · · , (1.5)

where {αn}∞n=0 is a sequence in [0, 1] is called the Jungck-Mann iteration process.
If αn = 1 and Y = E in (1.5), then we obtain

Sxn+1 = Txn, n = 0, 1, 2, · · · , (1.6)

which is the Jungck iteration. See Jungck [13] for detail.
While the iteration process (1.5) extends (1.1), (1.3) and (1.6), the iteration processes
(1.4) and (1.5) are independent.

Kannan [14] established an extension of the Banach’s fixed point theorem by

using the following contractive definition: For a selfmap T, there exists β ∈ (0,
1
2
)

such that
d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)] , ∀ x, y ∈ E. (1.7)

Chatterjea [6] used the following contractive condition: For a selfmap T, there
exists γ ∈ (0, 1

2 ) such that

d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] , ∀ x, y ∈ E. (1.8)

Zamfirescu [39] established a nice generalization of the Banach’s fixed point theo-
rem by combining (1.2), (1.7) and (1.8). That is, for a mapping T : E → E, there
exist real numbers α, β, γ satisfying 0 ≤ α < 1, 0 ≤ β < 1

2 , 0 ≤ γ < 1
2 respectively

such that for each x, y ∈ E, at least one of the following is true:

(z1) d(Tx, Ty) ≤ αd(x, y)
(z2) d(Tx, Ty) ≤ β [d(x, Tx) + d(y, Ty)]
(z3) d(Tx, Ty) ≤ γ [d(x, Ty) + d(y, Tx)] .

 (1.9)

The mapping T : E → E satisfying (1.9) is called the Zamfirescu contraction. Any
mapping satisfying condition (z2) of (1.9) is called a Kannan mapping, while the
mapping satisfying condition (z3) is called Chatterjea operator. The contractive con-
dition (1.9) implies

||Tx− Ty|| ≤ 2δ||x− Tx||+ δ||x− y||, ∀ x, y ∈ E, (1.10)

where δ = max
{

α,
β

1− β
,

γ

1− γ

}
, 0 ≤ δ < 1.

Condition (1.9) was used by Rhoades [33, 34] to obtain some convergence results
for Mann and Ishikawa iteration processes in a uniformly convex Banach space.
The results of [33, 34] were recently extended by Berinde [5] to an arbitrary Banach
space for the same fixed point iteration processes. Similar convergence results were
also established in Rafiq [28, 29] for other interesting iteration processes.

Singh et al [38] defined the following general iteration process:
Let S, T : Y → E and T (Y ) ⊆ S(Y ). For any x0 ∈ Y, let

Sxn+1 = f(T, xn), n = 0, 1, · · · (1.11)

where f is some function.
For f(T, xn) = Txn+1, then (1.11) reduces to the Jungck-type iteration process

of Singh et al [38].
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If Y = E, and f(T, xn) = Txn, n = 0, 1, · · · , then (1.11) reduces to the Jungck
iteration process of (1.6).
If Y = E, and f(T, xn) = Txn, n = 0, 1, · · · , then (1.11) reduces to the Jungck
iteration process of (1.6). Jungck [13] established that the maps S and T satisfying

d(Tx, Ty) ≤ ad(Sx, Sy), ∀ x, y ∈ E, a ∈ [0, 1), (1.12)

have a unique common fixed point in a complete metric space E, provided that S
and T commute, T (Y ) ⊆ S(Y ) and S is continuous. For results which are similar
to Jungck [13] in uniform spaces, we refer to Aamri and El Moutawakil [1] as well
as to Olatinwo [23, 24].

The following definition of the stability of iteration process due to Singh et al
[38] shall be required in the sequel.

Definition 1.1. Let S, T : Y → E, T (Y ) ⊆ S(Y ) and z a coincidence point of S
and T, that is, Sz = Tz = p (say). For any x0 ∈ Y, let the sequence {Sxn}∞n=0 ,
generated by the iteration procedure (1.11) converge to p. Let {Syn}∞n=0 ⊂ E be
an arbitrary sequence, and set εn = d(Syn+1, f(T, yn)), n = 0, 1, · · · Then, the
iteration procedure (1.11) will be called (S, T )−stable if and only if lim

n→∞
εn = 0

implies that lim
n→∞

Syn = p.

This definition reduces to that of the stability of iteration procedure due to
Harder and Hicks [9] when Y = E and S = I (identity operator).

Several stability results established in metric space and normed linear space are
available in the literature. Some of the various authors whose contributions are
of important value in the study of stability of the fixed point iteration procedures
are Ostrowski [27], Harder and Hicks [9], Rhoades [30, 32], Osilike [25], Osilike
and Udomene [26], Jachymski [12], Berinde [3, 4] and Singh et al [38]. Harder and
Hicks [9], Rhoades [30, 32], Osilike [25] and Singh et al [38] used the method of the
summability theory of infinite matrices to prove various stability results for certain
contractive definitions. The method has also been adopted to establish various
stability results for certain contractive definitions in Olatinwo et al [20, 21]. Osilike
and Udomene [26] introduced a shorter method of proof of stability results and
this has also been employed by Berinde [3], Imoru and Olatinwo [10], Olatinwo et
al [22] and some others. In Harder and Hicks [9], the contractive definition stated
in (1.2) was used to prove a stability result for the Kirk’s iteration process. The
first stability result on T− stable mappings was proved by Ostrowski [27] for the
Picard iteration using condition (1.2).

In addition to (1.2), the contractive condition in (1.9) was also employed by
Harder and Hicks [9] to establish some stability results for both Picard and Mann
iteration processes. Rhoades [30, 32] extended the stability results of [9] to more
general classes of contractive mappings. Rhoades [30] extended the results of [9]
to the following independent contractive condition: there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ c max {d(x, y), d(x, Ty), d(y, Tx)} , ∀ x, y ∈ E. (1.13)

Rhoades [32] used the following contractive definition: there exists c ∈ [0, 1) such
that ∀ x, y ∈ E, we have
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d(Tx, Ty) ≤ c max
{

d(x, y),
d(x, Tx) + d(y, Ty)

2
, d(x, Ty), d(y, Tx)

}
. (1.14)

Moreover, Osilike [25] generalized and extended some of the results of Rhoades
[32] by using a more general contractive definition than those of Rhoades [30,
32]. Indeed, he employed the following contractive definition: there exist a ∈
[0, 1], L ≥ 0 such that

d(Tx, Ty) ≤ Ld(x, Tx) + ad(x, y), ∀ x, y ∈ E. (1.15)

Osilike and Udomene [26] introduced a shorter method to prove stability results
for the various iteration processes using the condition (1.15). Berinde [3] estab-
lished the same stability results for the same iteration processes using the same
set of contractive definitions as in Harder and Hicks [9] but the same method of
shorter proof as in Osilike and Udomene [26].

More recently, Imoru and Olatinwo [10] established some stability results which
are generalizations of some of the results of [3, 9, 25, 26, 30, 32]. In Imoru and
Olatinwo [10], the following contractive definition was employed: there exist
a ∈ [0, 1) and a monotone increasing function ϕ : R+ → R+ with ϕ(0) = 0, such
that

d(Tx, Ty) ≤ ϕ(d(x, Tx)) + ad(x, y), ∀ x, y ∈ E. (1.16)
Condition (1.16) was also employed in Olatinwo et al [20] to establish some stabil-
ity results in normed linear space setting with additional condition of continuity
imposed on ϕ.

However, Singh et al [38] established some stability results for Jungck and
Jungck-Mann iteration processes by employing two contractive definitions both
of which generalize those of Osilike [25] but is independent of that of Imoru and
Olatinwo [10]. Singh et al [38] obtained stability results for Jungck and Jungck-
Mann iterative procedures in metric space using both the contractive definition
(1.12) and the following: For S, T : Y → E and some a ∈ [0, 1), we have

d(Tx, Ty) ≤ ad(Sx, Sy) + Ld(Sx, Tx), ∀ x, y ∈ Y. (1.17)

In the next section, we shall introduce the Jungck-Ishikawa iteration process
to prove some stability and convergence results for nonselfmappings in normed
linear space and arbitrary Banach space respectively. In establishing our results, a
more general contractive condition than (1.9) will be considered.

2. PRELIMINARIES

We shall consider the following iteration process in establishing our results: Let
(E, ||.||) be a Banach space and Y an arbitrary set. Let S, T : Y → E be two
nonselfmappings such that T (Y ) ⊆ S(Y ), S(Y ) is a complete subspace of E and
S is injective. Then, for x0 ∈ Y, define the sequence {Sxn}∞n=0 iteratively by

Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTxn

}
, n = 0, 1, · · · , (2.1)

where {αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1].
The iteration process (2.1) will be called the Jungck-Ishikawa iteration process. The



Some stability and strong convergence results for the Jungck-Ishikawa iteration process 37

iteration processes (1.1) and (1.3) - (1.6) are special cases of (2.1). For instance, if
in (2.1), S is identity operator, Y = E, βn = 0 then we obtain the Mann iteration
process of (1.3). Since S is injective, if βn = 0, then for x0 ∈ Y, (2.1) reduces to the
Jungck-Mann iteration process of (1.5).

In addition to the iteration process (2.1), we shall employ the following contrac-
tive definitions:

Definition 2.1. For two nonselfmappings S, T : Y → E with T (Y ) ⊆ S(Y ), where
S(Y ) is a complete subspace of E,
(a) there exist a real number a ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+ such that ϕ(0) = 0 and ∀ x, y ∈ Y, we have

||Tx− Ty|| ≤ ϕ(||Sx− Tx||) + a||Sx− Sy||; (2.2)

and
(b) there exist real numbers M ≥ 0, a ∈ [0, 1) and a monotone increasing function
ϕ : R+ → R+ such that ϕ(0) = 0 and ∀ x, y ∈ Y, we have

||Tx− Ty|| ≤ ϕ(||Sx− Tx||) + a||Sx− Sy||
1 + M ||Sx− Tx||

. (2.3)

In this paper, we shall consider the Jungck-Ishikawa iteration process defined in
(2.1) to establish some stability results for nonselfmappings in normed linear space
as well as obtain some strong convergence results for these nonselfmappings in an
arbitrary Banach space by employing the contractive conditions (2.2) and (2.3).
Our stability results are generalizations and extensions of those of Singh et al [38],
some results of [3, 10, 20, 21, 22, 30, 32], while the convergence results extend,
generalize and improve those of [5, 15, 16, 33, 34]. For more on the study of fixed
point iteration processes and various contractive conditions, our interested readers
can consult Berinde [4], Ciric [7, 8], Rhoades [35] and others in the reference section
of this paper.

Definition 2.2. Let X and Y be two nonempty sets and S, T : X → Y two map-
pings. Then, an element x∗ ∈ X is a coincidence point of S and T if and only if
Sx∗ = Tx∗. Denote the set of the coincidence points of S and T by C(S, T ).

There are several papers and monographs on the coincidence point theory.
However, we refer our readers to Rus [36] and Rus et al [37] for the Definition
2.2 and some coincidence point results.

We shall require the following lemma in the sequel.

Lemma 2.1. (Berinde [3, 4]): If δ is a real number such that 0 ≤ δ < 1, and {εn}∞n=0

is a sequence of positive numbers such that lim
n→∞

εn = 0, then for any sequence of positive
numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, · · · ,

we have lim
n→∞

un = 0.

We establish our main results in the next two sections. Section 3 deals with some
stability results in normed linear space, while some strong convergence results are
proved in Section 4.
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3. SOME STABILITY RESULTS IN NORMED LINEAR SPACE

Theorem 3.1. Let (E, ||.||) be a normed space and Y an arbitrary set. Suppose that
S, T : Y → E are nonself operators such that T (Y ) ⊆ S(Y ), S(Y ) a complete
subspace of E, and S is an injective operator. Let z be a coincidence point of S and
T (that is, Sz = Tz = p). Suppose that S and T satisfy condition (2.3). Let
ϕ : R+ → R+ be a monotone increasing function such that ϕ(0) = 0. For x0 ∈ Y, let
{Sxn}∞n=0 be the Jungck-Ishikawa iteration process defined by (2.1) converging to p, where
{αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that 0 < α ≤ αn and 0 < β ≤ βn.
Then, the Jungck-Ishikawa iteration process is (S, T )-stable.

Proof. Suppose that {Syn}∞n=0 ⊂ E, εn = ||Syn+1 − (1 − αn)Syn − αnTbn||, n =
0, 1, · · · , where Sbn = (1 − βn)Syn + βnTyn and let lim

n→∞
εn = 0. Then, we shall

establish that lim
n→∞

Syn = p, using the contractive condition (2.3) and the triangle
inequality:

||Syn+1 − p|| ≤ ||Syn+1 − (1− αn)Syn − αnTbn||+ ||(1− αn)Syn+
+αnTbn − (1− αn + αn)p||
= εn + ||(1− αn)(Syn − p) + αn(Tbn − p)||
≤ εn + (1− αn)||Syn − p||+ αn||p− Tbn||
= εn + (1− αn)||Syn − p||+ αn||Tz − Tbn||

≤ εn + (1− αn)||Syn − p||+ αn[
ϕ(||Sz − Tz||) + a||Sz − Sbn||

1 + M ||Sz − Tz||
]

= (1− αn)||Syn − p||+ aαn||p− Sbn||+ εn. (3.1)

Therefore, we have

||p− Sbn|| = ||(1− βn + βn)p− (1− βn)Syn − βnTyn||
= ||(1− βn)(p− Syn) + βn(p− Tyn)||
≤ (1− βn)||p− Syn||+ βn||Tz − Tyn||
≤ (1− βn + aβn)||Syn − p||. (3.2)

Using (3.2) in (3.1) yields

||Syn+1 − p|| ≤ [1− (1− a)αn − (1− a)aαnβn]||Syn − p||+ εn

≤ [1− (1− a)α− (1− a)aαβ]||Syn − p||+ εn. (3.3)

Since 0 ≤ 1− (1− a)α− (1− a)aαβ < 1, using Lemma 2.3 in (3.3) yields
limn→∞ ||Syn − p|| = 0, that is, lim

n→∞
Syn = p.

Conversely, let lim
n→∞

Syn = p. Then, by using the triangle inequality and the con-
tractive definition, we have the following:

εn = ||Syn+1 − (1− αn)Syn − αnTbn||
≤ ||Syn+1 − p||+ ||(1− αn + αn)p− (1− αn)Syn − αnTbn||
= ||Syn+1 − p||+ ||(1− αn)(p− Syn) + αn(p− Tbn)||
= ||Syn+1 − p||+ ||(1− αn)(p− Syn) + αn(Tz − Tbn)||
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ αn||Tz − Tbn||
≤ ||Syn+1 − p||+ (1− αn)||Syn − p||+ aαn||p− Sbn||. (3.4)
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Again, we have by the contractive condition that

||p− Sbn|| = ||(1− βn + βn)p− (1− βn)Syn − βnTyn||
= ||(1− βn)(p− Syn) + βn(p− Tyn)||
≤ (1− βn)||p− Syn||+ βn||p− Tyn||
= (1− βn)||Syn − p||+ βn||Tz − Tyn||
≤ (1− βn + aβn)||Syn − p||. (3.5)

Using (3.5) in (3.4), then we obtain

εn ≤ ||Syn+1 − p||+ [1− (1− a)αn − (1− a)aαnβn]||Syn − p||
≤ ||Syn+1 − p||+ [1− (1− a)α− (1− a)aαβ]||Syn − p|| → 0 as n →∞.

Hence, the iteration process defined in (2.1) is stable with respect to the pair
(S, T ). �

Theorem 3.2. Let (E, ||.||) be a normed space and Y an arbitrary set. Suppose that
S, T : Y → E are nonself operators such that T (Y ) ⊆ S(Y ), S(Y ) a complete
subspace of E, and S is an injective operator. Let z be a coincidence point of S and
T (that is, Sz = Tz = p). Suppose that S and T satisfy condition (2.2). Let
ϕ : R+ → R+ be a monotone increasing function such that ϕ(0) = 0. For x0 ∈ Y, let
{Sxn}∞n=0 be the Jungck-Ishikawa iteration process defined by (2.1) converging to p, where
{αn}∞n=0 and {βn}∞n=0 are sequences in [0, 1] such that 0 < α ≤ αn and 0 < β ≤ βn.
Then, the Jungck-Ishikawa iteration process is (S, T )-stable.

Proof. Theorem 3.2 is proved by putting M = 0 in the proof of Theorem 3.1. �

Remark 3.1. Both Theorem 3.1 and Theorem 3.2 are generalizations and exten-
sions of Theorem 3.5 of Singh et al [38], Theorem 3 of Berinde [3], Theorem 2 of
Osilike [25], Theorem 2 and Theorem 5 of Osilike and Udomene [26], Theorem 2 of
Rhoades [30], Theorem 30 of Rhoades [31], Theorem 2 of Rhoades [32], Theorem 3
of Harder and Hicks [9] as well as some of the results of the author [10, 20, 21, 22].

4. SOME CONVERGENCE RESULTS IN ARBITRARY BANACH SPACE

Theorem 4.1. Let (E, ||.||) be an arbitrary Banach space and Y is an arbitrary set. Sup-
pose that S, T : Y → E are nonself operators such that T (Y ) ⊆ S(Y ), S(Y ) a complete
subspace of E, and S is an injective operator. Let z be a coincidence point of S and T (that
is, Sz = Tz = p). Suppose that S and T satisfy condition (2.3). Let ϕ : R+ → R+

be a monotone increasing function such that ϕ(0) = 0. For x0 ∈ Y, let {Sxn}∞n=0 be
the Jungck-Ishikawa iteration process defined by (2.1), where {αn}∞n=0 and {βn}∞n=0 are
sequences in [0, 1] such that

∑∞
k=0 αk = ∞. Then, {Sxn}∞n=0 converges strongly to p.

Proof. Let C(S, T ) be the set of the coincidence points of S and T. We shall now
use condition (2.3) to establish that S and T have a unique coincidence point z
(i.e. Sz = Tz = p (say)): Suppose that there exist z1, z2 ∈ C(S, T ) such that
Sz1 = Tz1 = p1 and Sz2 = Tz2 = p2. If p1 = p2, then Sz1 = Sz2 and since S is
injective, it follows that z1 = z2.
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If p1 6= p2, then we have by the contractiveness condition (2.3) for S and T that

0 < ||p1 − p2|| = ||Tz1 − Tz2|| ≤ ϕ(||Sz1 − Tz1||) + a||Sz1 − Sz2||
= a||p1 − p2||,

which leads to (1 − a)||p1 − p2|| ≤ 0, from which it follows that 1 − a > 0 since
a ∈ [0, 1), but ||p1 − p2|| ≤ 0, which is a contradiction since norm is nonnegative.
Therefore, we have that ||p1 − p2|| = 0, that is, p1 = p2 = p. Since p1 = p2, then we
have that p1 = Sz1 = Tz1 = Sz2 = Tz2 = p2, leading to Sz1 = Sz2 ⇒ z1 = z2 = z
(since S is injective). Hence, z ∈ C(S, T ), that is, z is a unique coincidence point of
S and T.

We now prove that {Sxn}∞n=0 converges strongly to p ( where Sz = Tz = p )
using again, condition (2.3). Therefore, we have

||Sxn+1 − p|| = ||(1− αn)Sxn + αnTbn − (1− αn + αn)p||
= ||(1− αn)(Sxn − p) + αn(Tbn − p)||
≤ (1− αn)||Sxn − p||+ αn||p− Tbn||
= (1− αn)||Sxn − p||+ αn||Tz − Tbn||

≤ (1− αn)||Sxn − p||+ αn[
ϕ(||Sz − Tz||) + a||Sz − Sbn||

1 + M ||Sz − Tz||
]

= (1− αn)||Sxn − p||+ aαn||(1− βn)(p− Sxn) + βn(Tz − Txn)||
≤ (1− αn)||Sxn − p||+ aαn[ (1− βn)||p− Sxn||+ βn||Tz − Txn|| ]
= (1− αn + aαn − aαnβn)||Sxn − p||+ aαnβn||Tz − Txn||
≤ [1− (1− a)αn − (1− a)aαnβn]||Sxn − p||
≤ [1− (1− a)αn]||Sxn − p||
≤ Πn

k=0[1− (1− a)αk]||Sx0 − p||
≤ Πn

k=0e
−(1−a)αk ||Sx0 − p||

= e−[(1−a)
∑n

k=0 αk]||Sx0 − p|| → 0 as n →∞, (4.1)

since
∑∞

k=0 αk = ∞ and a ∈ [0, 1). Hence, we obtain from (4.1) that
||Sxn − p|| → 0 as n →∞, that is, {Sxn}∞n=0 converges strongly to p. �

Theorem 4.2. Let (E, ||.||) be an arbitrary Banach space and Y is an arbitrary set. Sup-
pose that S, T : Y → E are nonself operators such that T (Y ) ⊆ S(Y ), S(Y ) a complete
subspace of E, and S is an injective operator. Let z be a coincidence point of S and T
(that is, Sz = Tz = p). Suppose that S and T satisfy the contractive condition (2.2). Let
ϕ : R+ → R+ be a monotone increasing function such that ϕ(0) = 0. Let ϕ : R+ → R+

be a monotone increasing function such that ϕ(0) = 0. For x0 ∈ Y, let {Sxn}∞n=0 be the
Jungck-Ishikawa iteration process defined by (2.1), where {αn} and {βn} are sequences
in [0, 1] such that

∑∞
k=0 αk = ∞. Then, {Sxn}∞n=0 converges strongly to p.

Proof. With M = 0 in the proof of Theorem 4.1, then the proof of Theorem 4.2 is
completed. �

Remark 4.1. Theorem 4.1 and Theorem 4.2 are generalizations and extensions of
a multitude of results. In particular, both Theorems are generalizations and exten-
sions of both Theorem 1 and Theorem 2 of Berinde [5], Theorem 2 and Theorem 3
of Kannan [15], Theorem 3 of Kannan [16], Theorem 4 of Rhoades [33] as well as
Theorem 8 of Rhoades [34]. Also, both Theorem 4 of Rhoades [33] and Theorem 8
of Rhoades [34] are Theorem 4.10 and Theorem 5.6 of Berinde [4] respectively.
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Remark 4.2. In this paper, we have considered a new iteration process, namely: the
Jungck-Ishikawa iteration process. This new iteration process extends the frontiers
of knowledge in the fixed point theory.
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