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The inclusion-exclusion principle and the pingenhole
principle on distributive lattices

VASILE POP

ABSTRACT. We present concrete examples of lattices endowed with ”measures” (related to contest
problems). The corresponding applications of the two principles are illustrated.

1. INTRODUCTION

We present concrete examples of lattices endowed with ”measures”, examples
5.1-5.6, related to contest problems. The corresponding applications of the two
principles are illustrated by problems 6.1-6.7.

Usually the two principles are formulated with respect to a finite set.
If A is a finite set, A1, A2, . . . , An ⊂ A are subsets of A and we denote by |X | the

number of elements of the set X ⊂ A, then the two principles are stated as:

1. |
n⋃

i=1

Ai| =
∑
i

|Ai| −
∑
i<j

|Ai ∩ Aj | +
∑

i<j<k

|Ai ∩ Aj ∩ Ak| − . . .

(The including-excluding principle)

2. If
n∑

i=1

|Ai| > |A| then there exist i �= j such that Ai ∩ Aj �= ∅.

(Dirichlet principle)
Many problems of geometric nature require the extension of these principles;

the appropriate framework is that of the distributive lattices.
On such a lattice it is necessary to replace the cardinal of a set by a suitable ”mea-
sure”.

2. PRELIMINARIES

We will give a short presentation of the notions used in this paper.

Definition 2.1. An ordered set (L,≤) is called lattice if for every x and y in L there
exists

inf{x, y} = x ∧ y ∈ L and sup{x, y} = x ∨ y ∈ L. �
Remark 2.1. 1) If x ∧ y = z then z is defined by the properties:

z ≤ x, z ≤ y and if a ≤ x and a ≤ y, then a ≤ z.

2) If x ∨ y = u then u is defined by the properties:

x ≤ u, y ≤ u and if x ≤ a and y ≤ a, then u ≤ a.
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3) A lattice can be regarded as a triplet (L,∨,∧) where ”∨” and ”∧” are associa-
tive and commutative operations on L with the properties:

x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x

for every x and y in L.
4) On the lattice (L,∨,∧) the order relation is defined by:

x ≤ y iff x ∧ y = x or iff x ∨ y = y.

Definition 2.2. The lattice (L,∨,∧) is called distributive if:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

for every x, y, z in L.

Remark 2.2. The lattice (L,∨,∧) is distributive iff one of the following properties
holds:

a) (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) = (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x) for every x, y, z in L;
b) If x ∧ z = y ∧ z and x ∨ z = y ∨ z, then x = y.

Definition 2.3. A function m : L → [0,∞] is called measure on the lattice (L,∨,∧)
if m(x ∨ y) + m(x ∧ y) = m(x) + m(y), for every x, y ∈ L.

If m(x ∨ y) ≥ m(x ∧ y) for every x, y in L, the measure m is called increasing
measure.

Remark 2.3. 1) An increasing measure on (L,∨,∧) = (L,≤) is an increasing func-
tion from the ordered set (L,≤) to the ordered set ([0,∞],≤) (if x ≤ y then x∨y = y
and x ∧ y = x, hence m(x) ≤ m(y)).

2) If the lattice L have a least element denoted by ∅ and the function take the
value 0, then: m(∅) = 0 and if x ∧ y = ∅ then m(x ∨ y) = m(x) + m(y).

3. THE INCLUSION-EXCLUSION PRINCIPLE

Let (L,∨,∧) a distributive lattice and m : L → [0,∞] a measure on L.

Theorem 3.1. (Inclusion-exclusion principle) For every finite set having the elements
a1, a2, . . . , an in L the following relation holds:

m(a1 ∨ · · · ∨ an) =
n∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

m(ai1 ∧ · · · ∧ aik
).

Proof. We prove by induction on n.
For n = 1, m(a1) = m(a1) and for n = 2 the relation becomes

m(a1 ∨ a2) = m(a1) + m(a2) − m(a1 ∧ a2)

obvious in the Definition 2.3. We suppose that the relation holds for n and we
prove that it holds for n + 1.

We have:

m(a1 ∨ · · · ∨ an ∨ an+1) = m((a1 ∨ · · · ∨ an) ∨ an+1) =

m(a1 ∨ · · · ∨ an) + m(an+1) − m((a1 ∨ · · · ∨ an) ∧ an+1) =

m(a1 ∨ · · · ∨ an) + m(an+1) − m((a1 ∧ an+1) ∨ · · · ∨ (an ∧ an+1)) =
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n∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

m(ai1 ∧ · · · ∧ aik
) + m(an+1)−

−
n∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

m(ai1 ∧ · · · ∧ aik
∧ an+1) =

n∑
i1=1

m(ai1 + m(an+1) +
n∑

k=2

(−1)k+1
∑

1≤i1<···<ik≤n

m(ai1 ∧ · · · ∧ aik
)−

−(−1)n−1m(a1∧· · ·∧an∧an+1)−
n−1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n

m(ai1∧· · ·∧aik
∧an+1) =

(−1)n+1
n+1∑
i1=1

m(ai1) +
n+1∑
k=2

(−1)k+1
∑

1≤i1<···<ik≤n+1

m(ai1 ∧ · · · ∧ aik
)+

+
n+1∑
k=2

(−1)k+1
∑

1≤i1<···<ik≤n+1

m(ai1 ∧ · · · ∧ aik
) + (−1)n+2m(a1 ∧ · · · ∧ a1 ∧ an+1) =

n+1∑
k=1

(−1)k+1
∑

1≤i1<···<ik≤n+1

m(ai1 ∧ · · · ∧ aik
).

�

Corollary 3.1. (Dual principle) For every a1, a2, . . . , an in L we have:

m(a1 ∧ · · · ∧ an) =
n∑

k=1

(−1)k+1
∑

1≤i1<···<ik≤n

m(a1 ∨ · · · ∨ aik
).

Proof. Using the symmetry of ”∨” and ”∧” in the definition of measure and the
distributivity of the lattice we may replace in Theorem 3.1 ”∨” by ”∧”. �

Remark 3.1. 1) If A = {ai| i ∈ I} with I a finite set, then Theorem 3.1 and Corollary
3.1 become:

T1 : m

(∨
i∈I

ai

)
=
∑
K⊂I

(−1)|K|+1m

( ∧
k∈K

ak

)

C1 : m

(∧
i∈I

ai

)
=
∑
K⊂I

(−1)|K|+1m

( ∨
k∈K

ak

)

where |K| is the number of elements of the nonempty set K .
2) If we denote by

mk =
∑

1≤i1<···<ik≤n

m(ai1 ∧ · · · ∧ aik
)

and

m0 = m

(
n∨

i=1

ai

)
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then from Theorem 3.1 holds: ∑
(−1)kmk = 0.

4. THE DIRICHLET PRINCIPLE

We deal in what follows with Dirichlet principle.
Let (L,∨,∧) be a distributive lattice and m : L → [0,∞] a measure on L. For

a1, a2, . . . , an ∈ L we denote

Ik =
∨

1≤i1<···<ik≤n

(ai1 ∧ · · · ∧ aik
), k = 1, n

(I1 =
n∨

i=1

ai, I2 =
∨

1≤i<j≤n

(ai ∧ aj), . . . , In =
n∧

i=1

ai). �

Theorem 4.1. (Pingen hole principle or Dirichlet principle) For every finite set with ele-
ments a1, a2, . . . , an in L we have the relation:

n∑
k=1

m(ak) =
n∑

k=1

m(Ik).

Proof. We prove by induction on n.
For n = 1 the relation becomes m(a1) = m(a1), and for n = 2

m(a1) + m(a2) = m(a1 ∨ a2) + m(a1 ∧ a2),

which is true by Definition 2.3.
For n + 1 we have

I ′k =
∨

1≤i1<···<ik≤n+1

(ai1 ∧ · · · ∧ aik
) = Ik ∨ (an+1 ∧ Ik−1),

hence:
m(I ′k) = m(Ik) + m(an+1 ∧ Ik−1) − m(Ik ∧ an+1)

and
n∑

k=1

m(I ′k) =
n∑

k=1

m(Ik) + m(ak+1) − m(an+1 ∧ In) =

n∑
k=1

m(ak) + (ak+1) − m(I ′n+1),

then
n+1∑
k=1

m(I ′k) =
n+1∑
k=1

m(ak).

�

Corollary 4.1. (Dual relation) If we denote Uk =
∧

1≤i1<···<ik≤n

(ai1 ∨ · · · ∨ aik
) then:

n∑
k=1

m(ak) =
n∑

k=1

m(Uk).
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Let (L,∨,∧) be a distributive lattice with the least element ∅ and let m be an
increasing measure on L with m(∅) = 0. In these conditions the following conse-
quences of Theorem 4.1 holds:

Corollary 4.2. If ai1 ∧· · ·∧aip ∧aip+1 = ∅ for every different numbers i1, . . . , ip, ip+1 ∈
{1, 2, . . . , n} then:

n∑
k=1

m(ak) ≤ p · m
(

n∨
k=1

ak

)
.

Proof. The condition implies Ip+1 = ∅. From In ≤ In−1 ≤ · · · ≤ Ip+1 ≤ · · · ≤ I1

follows
m(In) ≤ m(In−1) ≤ · · · ≤ m(Ip+1) ≤ m(Ip) ≤ · · · ≤ m(I1)

and hence
n∑

k=1

m(ak) =
n∑

k=1

m(Ik) = m(I1) + · · · + m(Ip) ≤ pm(I1).

�

Corollary 4.3. If p ∈ {1, 2, . . . , n} and
n∑

k=1

m(ak) > p · m
(

n∨
k=1

ak

)

then there exist different i1, i2, . . . , ip, ip+1 such that:

ai1 ∧ · · · ∧ aip ∧ aip+1 �= ∅.
Proof. If ai1 ∧ · · · ∧ aip ∧ aip+1 = ∅ for every i1 < · · · < ip+1 then Ip+1 = ∅ and from
Corollary 4.2, the contrary inequality holds. �

Corollary 4.4. If p ∈ {1, 2, . . . , n − 1} and
n∑

k=1

m(ak) > p · m
(

n∨
k=1

ak

)

then there exist different i1, . . . , ip, ip+1 such that:

m(ai1 ∧ · · · ∧ aip ∧ aip+1) ≥
D

(n − p)
(

n

p + 1

)

where D =
n∑

k=1

m(ak) − p · m
(

n∨
k=1

ak

)
.

Proof. From Theorem 4.1 we have
n∑

k=1

m(ak) = m(I1) + · · · + m(Ip) + m(Ip+1) + · · · + m(In) ≤

≤ pm(I1) + (n − p)m(Ip+1) = p · m
(

n∨
k=1

ak

)
+ (n − p)m(Ip+1),
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hence
m(Ip+1) ≥ D

n − p
.

But

m(Ip+1) = m

⎛
⎝ ∨

1≤i1<···<ip+1≤n

(ai1 ∧ · · · ∧ aip+1)

⎞
⎠ ≤

≤
∑

1≤i1<···<ip+1≤n

m(ai1 ∧ · · · ∧ aip+1).

This sum contains
(

n

p + 1

)
terms, so then there exists one of them such that

m(ai1 ∧ · · · ∧ aip+1) ≥
D

(n − p)
(

n

p + 1

) .

�
Remark 4.1. If m(a1) + · · · + m(an) > m(a1 ∨ · · · ∨ an) then there exist i, j ∈
{1, 2, . . . , n}, i �= j such that ai ∧ aj �= ∅.

This is a particular case of Corollary 4.3 (for p = 1) frequently used as pingen-
hole principle.

5. EXAMPLES OF DISTRIBUTIVE LATTICES WITH MEASURE

Example 5.1. ((M),⊂) = ((M),∪,∩), m(X) = |X |.
If M is a finite set and (M) is the family of all subsets of M , (M) together with

inclusion relation is a distributive lattice in which X∨Y = X∪Y and X∧Y = X∩Y ,
for every X, Y ⊂ M .

The function m : (M) → N, m(X) = |X | = the number of elements of the set
X ⊂ M , is an increasing measure on (M). The lattice (M) has the least element the
empty set ∅.

If M is an infinite set, then F (M), the set of all finite subsets of M , is a distribu-
tive lattice and on F (M) can be considered the same measure.

Example 5.2. (R,≤) = (R, max, min), m(x) = |x|.
The set R of real numbers, with the usual order relation ”≤” is a distributive

lattice in which:

x ∨ y = max{x, y} =
x + y + |x − y|

2

x ∧ y = min{x, y} =
x + y − |x − y|

2
The function m : R → [0,∞), m(x) = |x| is a measure on R (|max{x, y}| =

|x| + |y| − |min{x, y}|). Because R has not a least element and the measure is not
increasing on R, we can use only Theorem 3.1, Theorem 3.2 and Corollary 3.1 but
we cannot apply Corollary 4.1, 4.2 and 4.3.

As sublattices of the lattice we have the lattices (Z, max, min), (N, max, min) and
(R+, max, min).
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The second and the third has the least element 0 and the measure m(x) = x is
an increasing measure. We can use Corollary 4.1, 4.2 and 4.3.

Example 5.3. (N∗, |) = (N∗, l.c.m., g.c.d), m(x) = log x.

The set of positive integers N
∗ = {1, 2, 3, . . .} with the divisibility relation, is a

distributive lattice (N∗, |) in which:

x ∨ y = [x, y] = l.c.m.{x, y}
x ∧ y = (x, y) = g.c.d.{x, y}.

The function m : N
∗ → [0,∞), m(x) = log x (the base of logarithm is a number

higher than 1) verifies the relation

log([x, y]) + log((x, y)) = log x + log y,

that is increasing on N
∗ and m(1) = 0, 1 is the least element. In this example

Theorem 3.1 and Corollary 3.1 are:

[a1, a2, . . . , an] =

∏
i=1,n

ai

∏
i1<i2<i3

(ai1 , ai2 , ai3) . . .

∏
i1<i2

(ai1 , ai2)
∏

i1<i2<i3<i4

(ai1 , ai2 , ai3 , ai4) . . .

At nominator we have all greatest common divisors of the subsets with odd
numbers of elements and at the denominator we have all greatest common divisors
of subsets with an even number of elements from the set {a1, a2, . . . , an}.

(a1, a2, . . . , an) =

∏
ai1

∏
[ai1 , ai2 , ai3 ] . . .∏

[ai1 , ai2 ]
∏

[ai1 , ai2 , ai3 , ai4 ] . . .

Example 5.4. A probability space (P ,∪,∩) with a random function p : → [0, 1] is
a particular case of the lattice ((M),∪,∩).

Example 5.5. (Ru[X ], |), m(f) = deg(f).

If Ru[X ] is the set of all unitary polynomials with real coefficients, the divisibil-
ity relation is an order relation and (Ru[X ], |) is a distributive lattice in which:

f ∨ g = [f, g], the least common multiple and
f ∧ g = (f, g), the greatest common divisor. The function m : Ru[X ] → N,

m(f) = deg(f) is an increasing measure and f = 1 is the least element.

Example 5.6. (Jn,∪,∩), the set of all Jordan-measurable sets from R
n, and m(X)

is the Jordan measure of X , which is an increasing measure.

The measure in R
n of the parallelepiped

P =
n∏

i=1

[ai, bi]

is

m(P ) =
n∏

i=1

(bi − ai).
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In particular case the measure in R (on a line) is the length, the measure in R
2

(on a plane) is the area, the measure in R
3 (in the space) is the volume. Because

m(∅) = 0 all theoretical results that we have obtained may be applied.

6. APPLICATIONS

In this section we will give some applications.

Problem 6.1. Prove that for every 1000 points situated in a disc with the radius

R = 1, there exists a disc with the radius r =
1
9

which cover at least 11 points.

Solution. We prove that 11 of the discs Di, i = 1, 1000 with the radius r =
1
9

, centered in the given points have the intersection nonempty. The maximum

covered surface is less than that of the given disc, with the radius increased to

1 +
1
9

, so

S

(
1000⋃
i=1

Di

)
< π

(
1 +

1
9

)2

=
100π

81
.

On the other hand, taking into account Corollary 4.3.

1000∑
i=1

S(Di) = 1000
π

81
,

so
1000∑
i=1

S(Di) > 10S

(
1000⋃
i=1

Di

)

Problem 6.2. Consider the natural numbers a, b, c and denote by M their least
common multiple. Prove that if abc > 4M , then two of the numbers a, b, c have a
common divisor d ≥ 3.

Solution. From the third example we have

M = [a, b, c] =
abc(a, b, c)

(a, b)(b, c)(c, a)
.

From abc > 4M it follows that 4(a, b, c) < (a, b)(b, c)(c, a).
If we suppose (a, b) ≤ 2, (b, c) ≤ 2 and (c, a) ≤ 2, then two situations can hold:
1. If (a, b) = (b, c) = (c, a) = 2, then (a, b, c) = 2 and the inequality becomes

4 · 2 < 2 · 2 · 2 (false).
2. If (a, b) = 1 then (a, b, c) = 1 and the inequality becomes

4 < (b, c)(c, a) ≤ 2 · 2 = 4 (false)

So there exists d ∈ {(a, b), (b, c), (c, a)} with d ≥ 3.

Problem 6.3. Consider a1, a2, . . . , an ∈ N
∗ and let M be their least common multi-

ple. Prove that if a1a2 . . . an > Mp for some p ∈ N
∗, then n ≥ p + 1 and there exist

p + 1 numbers ai1 , ai2 , . . . , aip+1 which have a common divisor d ≥ 2.
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Solution. From Example 5.3 it follows that (N∗, (·, ·), [·, ·]) is a distributive lattice
and the function lg : N

∗ → [0,∞) is a measure. Taking the logarithm in the given
relation we obtain

n∑
i=1

lg ai > p lg M

and using Corollary 4.3 it follows that there exist ai1 , ai2 , . . . , aip+1 such that

(ai1 , ai2 , . . . , aip+1) �= 1.

Problem 6.4. In the interior of a polygon having the area 13 we take 10 polygons
having the area 6. Prove that there exist 4 polygons having the overlapping surface

greater than
1
70

.

Solution. The area is a measure of the polygons in the plane (see Example 5.6).
If Pi, i = 1, 10 are the ten polygons, we have

S

(
10⋃

i=1

Pi

)
≤ 13 and

10∑
i=1

S(Pi) = 60,

so the difference

D =
10∑

i=1

S(Pi) − 3S

(
10⋃

i=1

Pi

)

is positive.
Using Corollary 4.4 we obtain that there exist the polygons Pi1 , Pi2 , Pi3 , Pi4 such

that

S(Pi1 ∩ Pi2 ∩ Pi3 ∩ Pi4 ) ≥
D

7C4
10

=
21

7 · 210
=

1
70

.

Problem 6.5. In a cube with the edge 1 we consider n spheres with the sum of their
areas 32. Prove that there exists a line which intersects at least 9 spheres.

Solution. Denoting by Sk the area of the diametral circle of the kth sphere we
know that

n∑
k=1

4Sk = 32.

Because Sk ≤ π

4
(the area of the circle with the radius

1
2

) we obtain 4n
π

4
> 32,

so n > 10.
If we consider the projections Dk, of the spheres Sk onto one of the faces of the

given cube, we will have
n∑

k=1

Sk = 8 > 8S

(
n⋃

k=1

Dk

)

and from Corollary 4.3 it follows that there exist 9 discs having nonempty inter-
section. The perpendicular to this plane which passes through one of the points
of intersection of the 9 discs, intersects the 9 spheres (those which have been pro-
jected).
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Problem 6.6. Let A1, . . . , An be finite sets and let x1, . . . , xn be integer numbers
with the sum: x1 + · · · + xn = 0.

Show that
n∑

i=1

n∑
j=1

|Ai ∪ Aj |xixj ≤ 0.

(|A| is the number of elements of A).

Solution. |Ai ∪ Aj | = |Ai| + |Aj | − |Ai ∩ Aj |.
n∑

i=1

n∑
j=1

|Ai ∪ Aj |xixj =
n∑

i=1

n∑
j=1

(|Ai| + |Aj |)xixj−

−
n∑

i=1

n∑
j=1

|Ai ∩ Aj |xixj = 2

(
n∑

k=1

xk

)(
n∑

k=1

xk|Ak|
)
−

−
n∑

i=1

n∑
j=1

|Ai ∩ Aj |xixj = −
n∑

i=1

n∑
j=1

|Ai ∩ Aj |xixj .

If
n⋃

k=1

Ak = {a1, a2, . . . , aN} we assign to every set Ak a vector Vk =

(vk1, . . . , vkN ) where:

vki =
{

1 if ai ∈ Ak

0 if ai �∈ Ak

and thus

|Ai ∩ Aj | =
N∑

i=1

vikvjk.

We have

−
n∑

i=1

n∑
j=1

|Ai ∩ Aj |xixj = −
N∑

k=1

⎛
⎝ n∑

i=1

n∑
j=1

(xivik)(xjvjk)

⎞
⎠ =

= −
N∑

k=1

(x1v1k + · · · + xnvnk)2 ≤ 0.

Problem 6.7. Let N be a natural number and a1, a2, . . . , an some natural divisors
of it (not necessarily distinct). Prove that

S =
∑

1≤i1≤n

ai1−
∑

1≤i1<i2≤n

(ai1 , ai2)+
∑

1≤i1<i2<i3≤n

(ai1 , ai2 , ai3)−· · ·+(−1)n−1(a1, a2, . . . , an)

is a natural number less than or equal to N . Characterize the situation when S =
N . ((x1, . . . , xk) is the greatest common divisor of the numbers x1, . . . , xk).

Solution. If a1, . . . , ak are divisors of N then we have:(
N

a1
,
N

a2
, . . . ,

N

ak

)
[a1, a2, . . . , ak] = N

(This can be proved by induction on k).
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Let bi =
N

ai
and Ai = {bi, 2bi, . . . , aibi = N}. Ai is the set of the multiples of bi;

it has |Ai| =
N

bi
= ai elements, i = 1, n. Then

|Ai1 ∩ Ai2 | =
N

[bi1 , bi2 ]
= (ai1 , ai2)

|Ai1 ∩ Ai2 ∩ Ai3 | =
N

[bi1 , bi2 , bi3 ]
= (ai1 , ai2 , ai3)

and we have∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

1≤i1≤n

|Ai1 |−
∑

1≤i1<i2≤n

|Ai1 ∩Ai2 |+
∑

1≤i1<i2<i3≤n

|Ai1 ∩Ai2 ∩Ai3 |− · · · =

=
∑

ai1 −
∑

(ai1 , ai2) +
∑

(ai1 , ai2 , ai3) − . . .

Each of the sets Ai contains only numbers from the set {1, . . . , N}. So∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ ≤ N.

Suppose that the numbers a1, . . . , ak are less than N . Then b1, . . . , bk are differ-

ent from 1 and the sets Aik
contain only multiples of bi ≥ 2. Thus

n⋃
i=1

Ai does not

contain prime numbers, hence

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ < N .

This means that S = N if and only if at least one of the numbers a1, . . . , an is N .
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