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Generalization of classification trees for a poset

LAURA VERES

ABSTRACT. The present article studies directed trees and classification trees defined in a partially
ordered set. In the first chapter we recall the notion of the classification trees for a poset, and the basic
notions for our investigations. In the second chapter we analyse the relations between classification
trees and tolerance classes, we present a new construction of classification trees, and also we discuss
the relation between classification trees and orthogonal systems.

1. INTRODUCTION
First, we recall some definitions which were introduced in article [7]:

Definition 1.1. ([7]) Let (P, <) be a non-empty partially ordered set (poset):

(i) P is called a meet-semilattice if for any subset of P with two elements exists
their infimum;

(ii) P is a lattice if the supremum and the infimum of any two elemented subset
of P there exists in P. P is called a complete lattice if the supremum and the
infimum exists for any subset of P;

(iii) P is called bounded if it has a largest element 1 and a smallest element 0.

Definition 1.2. ([7]) Let (P, <) be a poset with the largest element 1 € P and H a
non-empty subset of P, then

(i) H is a directed forest, if [z) N H is a chain for any z € H; (1)

(ii) a directed forest H is called directed tree if 1 € H. (2)

Definition 1.3. ([7]) Let (P, <) be a bounded poset and H C P a directed tree in
(P,<). H is aclassification tree, if (H U {0}, <gu{o)) is @ meet-semilattice. (3)

H is a maximal classification tree, if there is no other classification tree which
contains it as a proper subset.

Proposition 1.1. In every poset the meet of any non-empty family of directed forests is
also a directed forest.

Proof. Let H;,j € J be aset of directed forests and x € _mJHj. Then [z)N( _mJHj) =
JE JjE

QJ([m) N H;) is a chain (the meet of chains is empty or is a chain). It can not be

J

empty, because always contains z. O

We will introduce a relation p as follows:
Forall a,b € H we have apb < a <borb<aoranb=0.
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It is obvious that the relation p is reflexive and symmetric, therefore it is a toler-
ance relation.

Definition 1.4. ([6]) Let (P, <) be a poset, B C P asubset and p a tolerance relation
on P, then

(i) B is tolerance preclass, if for each z,y € B we have zpy;

(ii) B is a tolerance class, if B is maximal for the previous property, i.e. for all
z ¢ Bexistsb € Bsuchthat (z,b) ¢ p;

(iii) the set C, = {c € P|cpa for all a € P} is called the tolerance center of P.

It is well known (see [6]), that the tolerance center is the meet of all tolerance
classes, i.e. if K; is a set of p tolerance classes, then C, = _ﬂIKq;.
1€

We present a relation between classification trees and tolerance preclass proved
in paper [7] and we give a better proof of it.

Proposition 1.2. ([7]) Let (P, <) be a bounded poset and H C P a subset containing 1.
H is a classification tree if and only if H is a p tolerance preclass.

Proof. 7 = ” : We have to prove that any two elements of H are in relation p.

Take a,b € H. If a A b = 0, then we get apb.

IfaANb=c#0,thena,b > cand this implies a,b € [¢c) N H. Now, in view of
property (1), e and b must be comparable. So, we get again apb.

? «= 7 : Conversely, assume that H is a p tolerance preclass with the largest
element 1. We have to prove the three properties of the classification trees.

(2) is satisfied since 1 € H.

(1) Let h € H. In order to prove that [h) N H = {¢ € H|c > h} is a chain, take
some ¢y, co € H with ¢y, co > h. Then¢; Aca # 0. As H is a p tolerance preclass we
have also ¢, pco. Hence, by the definition of p we obtain ¢; > ¢o or ¢o > ¢;.

(3) For all a,b € H we have apb. In view of the definition of p we get

aAbe€{a,b0} C HU{0}. Hence H U {0} is a A-semilattice.

Finally, we obtain that H is a classification tree. d

We present an other relation between classification trees and tolerance classes
in the following theorem:

Theorem 1.1. Let (P, <) be a bounded poset. A non-empty subset H C P is a p tolerance
class if and only if H is a maximal classification tree.

Proof. ” = 7 : Let H be a p tolerance class. Since hpl holds for all h € H, we get
1 € H . Hence using Proposition 1.2, we obtain that H is a classification tree.

We will prove by contradiction that H is a maximal classification tree.

If H is not a maximal classification tree, then there exists a classification tree
K C P,with H C K, K # H. H is a p tolerance class, in view of Proposition 1.2 K
is a p tolerance preclass and also H C K, K # H. As this is a contradiction, we get
that H is a maximal classification tree.

? <" : Assume that H is a maximal classification tree. In view of Proposition
1.2 H is a p tolerance preclass. We will prove, that H is a tolerance class, i.e. it is
a maximal tolerance preclass. Suppose that H C K, K # H for a tolerance class
K. Then K is a classification tree. As H is a maximal classification tree, H C K,
K # H is a contradiction. O
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2. CLASSIFICATION TREES AND ORTHOGONAL SYSTEMS

A context (see [2],[4],[5]) is a triple (G, M, I) where G and M are sets and I C
G x M is a binary relation. The elements of G and M are called objects and re-
spectively attributes of the context. The relation g/ m means that the object g has
the attribute m. A small context can be easily represented by a cross table, i.e.,
by a rectangular table, the rows of which are headed by the object names and the
columns are headed by the attribute names. A cross in the intersection of the row
g and the column m, means that the object g has the attribute m.

For all sets A C G and B C M we define

Al={meM|gImforallge A},
B'={ge G|gImforallme B}.

A concept of the context (G, M, I) is a pair (A, B) , in which A’ = Band B’ =
A,and A C G, B C M. (G, M,I) denotes the set of all concepts of the context
(G, M,I).

(G, M, T) can be endowed with structure of a complete lattice defining the join
and meet of concepts as follows:

_/\ (Az;Bz) = <_U Ai, (_ﬁ Bz) )
i€l el el

"
el icl el
The lattice ((G, M, I), A, V) is called the concept lattice of the context (G, M, I).

Definition 2.5. ([1]) (i) Let (P,<) be aposetand i : P — P amap. The map h is
called closure operator if it is monotone, extensive and idempotent.

(ii) A closure system on a set A is a set of subsets which contains A and is closed
under intersections. Formally, ® C ©(A) is a closure system, if A € $and S C ¢
implies NS € &.

(iii) Let (A, <) be a poset. For X C A we will denote with X* and X, the set
of all upper and lower bounds of X. A closure system of the closure operator
v p(A) = p(A4), X — (X*). is called Dedekind-MacNeille completion of the
poset (A4, <).

Let (P, <) be a poset, (P, P, <) a corresponding context and (P, P, <) the con-
cept lattice of this context. It is well known, that the concept lattice (P, P, <) is the
Dedekind-MacNeille completion of the poset (P, <). So there exists an embedding

0: (P, <) — ((P,P,<),<) such that

a<b<s pla) <pb) and p(z) = ((z], [z)) forall z € P.

Theorem 2.2. Let (P, <) be a bounded poset and H C P a classification tree, then ¢(H)
is a classification tree in (P, P, <).

Proof. We have to prove, that ¢( H) satisfies the three properties of the classification
trees.
(2) It is known that (1) is the largest element in (P, P,<). As1 € H, we get

p(1) € p(H).
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(1) Leta = ((z],[z)) € ¢(H), then a = @(x) for some = € H. We prove that
[a) N (H) is a chain (which means, that for any elements b,c € ¢(H), b,c > a we
have b < corc < b).

Take some elements b,¢ € ¢(H). Then 3 u,v € H such that b = ((ul, [u)), ¢ =
(W], [v)) and b, e > a. As ((u], [u) = (@, [2)), (0], [v)) = (], [2)), we get (] < (u]
and (z] < (v]. Thenz <wandz < v. Asu,v € [z) N H,we haveu <vorv <u
and this implies that (u] < (v] or (v] < (u] holds. Then b = ((u], [u)) < ((v],[v)) = ¢

or ¢ = ((v],[v)) < ((u], [w)) = b.

(3) We have to prove that (¢(H) U ¢(0), <) is a A-semilattice of the lattice

(P, P, <).

Take a,b € p(H) U ¢(0), then exists three cases:

() Ifa = ({0},P) = p(0)orb = ({0},P) = ¢ (0), (¢(0) is the smallest element
of the lattice), then we get a A b = ¢(0).

(i) Leta,b € p(H) witha <borb < a,then a Ab = inf{a, b} € {a,b}.

(iii) Let a, b € ¢(H) incomparable. Then there exist z,y € H such that

a = ((z],[z)), b = ((y],[y)) and z,y are incomparable. As H is a classification
tree, in view of Proposition 1.2 we get zpy. As z,y are incomparable, then in view
of the definition of the relation p, we have x A y = 0.

Hence a A b = ((2],[2)) N ((W).[9) = ((zAyllzAy) = ({0},P) = o(0) €
(H) U (0).

Summarizing the above cases, we obtain that o (H) U (0) is a A-semilattice. O

Definition 2.6. ([3]) Let L be a lattice with the smallest element0. Aset O = {a;|i €
I}, I # @ of nonzero elements of L is called an orthogonal system, if a; A a; = 0,
foralli # j,i,j€1.

O is a maximal orthogonal system, if there is no other orthogonal system (O’ of
L containing O as a proper subset.

Definition 2.7. Let L be a lattice with the smallest element 0 and S = {a;|i € I},
I # @ and Sy = {b;|j € J}, J # @ two orthogonal systems. We write S; < S5, if
for each i € I there exists j(i) € J such that a; < b;(;. It is easy to see that < is a
partial order.

Remark 2.1. Observe that Sy = {1} is the greatest orthogonal system of L.

Definition 2.8. A lattice L has a finite height, if the length of any chains of it is less
or equal then a fixed number [ > 0.

Remark 2.2. Itis easy to see that in the case of a lattice with finite height any sub-
poset (4, <) of it has the following property: for any a € A there exists a maximal
element m, in (A, <) such that a < m,.

Now we are prepared to prove our main theorem:

Theorem 2.3. Let L be a lattice with finite heightand H C L a non-empty subset of

it. Then H = U Sx, where { S| A € A} isachain of orthogonal systems containing
AEA
So = {1} ifand only if H is a classification tree.

Proof. 7 =7 : (2) Clearly 1 € H, (so H has a largest element 1).
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(1) Take an element a € H and any elements b,c € [a) N H. Then a € S),,
b € Sy, c € Sy,forsome Ao, A1, A2 € A and clearly, a < b, cimplies Sy, < Sy, and
Sxo < Sx,-

Since Sy, A € Ais a chain, S,, and S, must be comparable. Without lost of
generality we can assume Sy, < S,,.

We will prove by contradiction that b and ¢ are comparable.

Indeed, assume that b and c are incomparable. Since S, < Sj,there exists an
element d € Sy,such that b < d. Since d # c and S, is an orthogonal system, we
getb A c < d A c = 0which is a contradiction, because of b A ¢ > a # 0. Thus we
obtain that b and c are comparable.

(3) Take z,y € HU{0}. Ifzoryis0,thenz Ay =0 € H U {0}. Suppose that
x,y # 0,then z,y € H. If x and y are comparable, thenz Ay € {z,y} C H.

Now, assume that x, y are incomparable elements of H. In view of the definition
of H there exists A, \' € A such that z € Sy, y € Sy . Since {Sx|A € A} is a chain,
without lost of generality we can assume Sy < Sy/. Hence there exists an element
z € Sy with z < z. As z, y are incomparable we must have z # y. Then z Ay <
z Ay = 0, since Sy is an orthogonal system. Hence z Ay = 0 € H U {0}.

Thus we obtain z Ay € H U {0} in each of the possible cases.

7 <= 7 : Conversely, assume that H is a classification tree. Then in view of
Proposition 1.2, H is a p tolerance preclass.

Now, we construct systems of elements S,,, n = 0,1, ... as follows: Sy = {1},

S = {a§1)|z‘ € I<1)} consists of maximal elements of H\ {Sy} (i.e. of all elements
a{" which satisfy a{") < 1)
v Sy = {a§"+1)|i € I(”+1>} contains all maximal elements of the set

H\ (SQ USiu...u Sn)

We prove by induction on n that S; > S; > ... > S, is a chain of orthogonal
systems.

Let n = 1. Clearly, S; = {1} is an orthogonal system. As the elements of S; are
maximal in H\ {Sy} they must be incomparable. Since H is a p tolerance preclass,
for all a;,a; € S1,i # j we get a; A a; = 0. Hence S; is an orthogonal system.
Clearly, Sp = {1} > 5.

Now, assume that our hypothesis holds for n = k, and let us prove that it holds
for n = k + 1 too.

First, we observe that the set H\ (So U S1 U...U Sk) is also a p tolerance pre-
classand Si+1 € H\ (So U S U...U S;_1). Since S contains maximal elements of
H\ (SoU Sy U...USk_1), for any a§k+1) € Sk+1 there exists an al(k) € S such that
a§k+1) < al(k).

k+1 k+1
(k1) g 51

Now, take any elements a € Sk+1, % # 7. Then there exists two cases:

" e S such that al(.’““)’(ékﬂ) < al(k)_ As

- there exists an element al(
(k+1)  (k+1)

7 » g
i 41 41
are incomparable and (aﬁ'“r ) alt Y

that the elements are orthogonal.

- if aEkH) , a;k“) has no common upperbound in S, by construction there exists

Qa
(+41) 5 gk+D)

) € p, we obtain a; = 0, proving
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al®) o € Sy, m #p,m,p e I® such that o*™ < o and agk“) <a. As

by induction hypothesis o'’ A a{f) = 0 we get a(k“) AatY <l nay? = 0and
this implies that S = {a§k+1)|z' el ’“*U} is an orthogonal system.

Observe, that in both of above cases S > Si+1. Hence Sp > 51 > ... > S >
Sk+1 is a chain. Thus we proved by induction that Sp > 51 > ... > S > Sp1 > ...
is a chain of orthogonal systems.

Observe that this chain of systems of orthogonal elements also contains at least

one decreasing chain of elements: 1 > a}) > a{? > .. > a{* 'V > .

As in H the length of any chain is Iess or equal then I, the constructlon process
ends in at most [-steps, let say in ¢ < [, g € N steps.

Then H* = H\(SoUS1U...US,) = @, otherwise H* has maximal elements
and we can continue the process. Therefore, we obtain H =7 _5,,. O
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