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Generalization of classification trees for a poset

LAURA VERES

ABSTRACT. The present article studies directed trees and classification trees defined in a partially
ordered set. In the first chapter we recall the notion of the classification trees for a poset, and the basic
notions for our investigations. In the second chapter we analyse the relations between classification
trees and tolerance classes, we present a new construction of classification trees, and also we discuss
the relation between classification trees and orthogonal systems.

1. INTRODUCTION

First, we recall some definitions which were introduced in article [7]:

Definition 1.1. ([7]) Let (P,≤) be a non-empty partially ordered set (poset):
(i) P is called a meet-semilattice if for any subset of P with two elements exists

their infimum;
(ii) P is a lattice if the supremum and the infimum of any two elemented subset

of P there exists in P . P is called a complete lattice if the supremum and the
infimum exists for any subset of P ;

(iii) P is called bounded if it has a largest element 1 and a smallest element 0.

Definition 1.2. ([7]) Let (P,≤) be a poset with the largest element 1 ∈ P and H a
non-empty subset of P , then

(i) H is a directed forest, if [x) ∩ H is a chain for any x ∈ H ; (1)
(ii) a directed forest H is called directed tree if 1 ∈ H . (2)

Definition 1.3. ([7]) Let (P,≤) be a bounded poset and H ⊆ P a directed tree in
(P,≤). H is a classification tree, if (H ∪ {0},≤H∪{0}) is a meet-semilattice. (3)

H is a maximal classification tree, if there is no other classification tree which
contains it as a proper subset.

Proposition 1.1. In every poset the meet of any non-empty family of directed forests is
also a directed forest.

Proof. Let Hj , j ∈ J be a set of directed forests and x ∈ ∩
j∈J

Hj . Then [x)∩( ∩
j∈J

Hj) =

∩
j∈J

([x) ∩ Hj) is a chain (the meet of chains is empty or is a chain). It can not be

empty, because always contains x. �
We will introduce a relation ρ as follows:
For all a, b ∈ H we have aρb ⇔ a ≤ b or b ≤ a or a ∧ b = 0.
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It is obvious that the relation ρ is reflexive and symmetric, therefore it is a toler-
ance relation.

Definition 1.4. ([6]) Let (P,≤) be a poset, B ⊆ P a subset and ρ a tolerance relation
on P , then

(i) B is tolerance preclass, if for each x, y ∈ B we have xρy;
(ii) B is a tolerance class, if B is maximal for the previous property, i.e. for all

z /∈ B exists b ∈ B such that (z, b) /∈ ρ ;
(iii) the set Cρ = {c ∈ P |cρa for all a ∈ P} is called the tolerance center of P .

It is well known (see [6]), that the tolerance center is the meet of all tolerance
classes, i.e. if Ki is a set of ρ tolerance classes, then Cρ = ∩

i∈I
Ki.

We present a relation between classification trees and tolerance preclass proved
in paper [7] and we give a better proof of it.

Proposition 1.2. ([7]) Let (P,≤) be a bounded poset and H ⊆ P a subset containing 1.
H is a classification tree if and only if H is a ρ tolerance preclass.

Proof. ” =⇒ ” : We have to prove that any two elements of H are in relation ρ.
Take a, b ∈ H . If a ∧ b = 0, then we get aρb.
If a ∧ b = c 
= 0, then a, b ≥ c and this implies a, b ∈ [c) ∩ H . Now, in view of

property (1), a and b must be comparable. So, we get again aρb.
” ⇐= ” : Conversely, assume that H is a ρ tolerance preclass with the largest

element 1. We have to prove the three properties of the classification trees.
(2) is satisfied since 1 ∈ H .
(1) Let h ∈ H . In order to prove that [h) ∩ H = {c ∈ H |c ≥ h} is a chain, take

some c1, c2 ∈ H with c1, c2 ≥ h. Then c1 ∧ c2 
= 0. As H is a ρ tolerance preclass we
have also c1ρc2. Hence, by the definition of ρ we obtain c1 ≥ c2 or c2 ≥ c1.

(3) For all a, b ∈ H we have aρb. In view of the definition of ρ we get
a ∧ b ∈ {a, b, 0} ⊆ H ∪ {0}. Hence H ∪ {0} is a ∧-semilattice.
Finally, we obtain that H is a classification tree. �
We present an other relation between classification trees and tolerance classes

in the following theorem:

Theorem 1.1. Let (P,≤) be a bounded poset. A non-empty subset H ⊆ P is a ρ tolerance
class if and only if H is a maximal classification tree.

Proof. ” =⇒ ” : Let H be a ρ tolerance class. Since hρ1 holds for all h ∈ H , we get
1 ∈ H . Hence using Proposition 1.2, we obtain that H is a classification tree.

We will prove by contradiction that H is a maximal classification tree.
If H is not a maximal classification tree, then there exists a classification tree

K ⊆ P , with H ⊆ K , K 
= H . H is a ρ tolerance class, in view of Proposition 1.2 K
is a ρ tolerance preclass and also H ⊆ K , K 
= H . As this is a contradiction, we get
that H is a maximal classification tree.

” ⇐= ” : Assume that H is a maximal classification tree. In view of Proposition
1.2 H is a ρ tolerance preclass. We will prove, that H is a tolerance class, i.e. it is
a maximal tolerance preclass. Suppose that H ⊆ K , K 
= H for a tolerance class
K . Then K is a classification tree. As H is a maximal classification tree, H ⊆ K ,
K 
= H is a contradiction. �
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2. CLASSIFICATION TREES AND ORTHOGONAL SYSTEMS

A context (see [2],[4],[5]) is a triple (G, M, I) where G and M are sets and I ⊆
G × M is a binary relation. The elements of G and M are called objects and re-
spectively attributes of the context. The relation gI m means that the object g has
the attribute m. A small context can be easily represented by a cross table, i.e.,
by a rectangular table, the rows of which are headed by the object names and the
columns are headed by the attribute names. A cross in the intersection of the row
g and the column m, means that the object g has the attribute m.

For all sets A ⊆ G and B ⊆ M we define
A′ = {m ∈ M | g I m for all g ∈ A},
B′ = {g ∈ G | g I m for all m ∈ B}.

A concept of the context (G, M, I) is a pair (A, B) , in which A′ = B and B′ =
A, and A ⊆ G, B ⊆ M . (G, M, I) denotes the set of all concepts of the context
(G, M, I).

(G, M, I) can be endowed with structure of a complete lattice defining the join
and meet of concepts as follows:

∧
i∈I

(Ai, Bi) =

(
∪

i∈I
Ai,

(
∩

i∈I
Bi

)′′)

∨
i∈I

(Ai, Bi) =

((
∩

i∈I
Ai

)′′
, ∪
i∈I

Bi

)

The lattice ((G, M, I),∧,∨) is called the concept lattice of the context (G, M, I).

Definition 2.5. ([1]) (i) Let (P,≤) be a poset and h : P → P a map. The map h is
called closure operator if it is monotone, extensive and idempotent.

(ii) A closure system on a set A is a set of subsets which contains A and is closed
under intersections. Formally, Φ ⊆ ℘(A) is a closure system, if A ∈ Φ and S ⊆ Φ
implies ∩S ∈ Φ.

(iii) Let (A,≤) be a poset. For X ⊆ A we will denote with X∗ and X∗ the set
of all upper and lower bounds of X . A closure system of the closure operator
ϕ : ℘(A) → ℘(A), X → (X∗)∗ is called Dedekind-MacNeille completion of the
poset (A,≤).

Let (P,≤) be a poset , (P, P,≤) a corresponding context and (P, P,≤) the con-
cept lattice of this context. It is well known, that the concept lattice (P, P,≤) is the
Dedekind-MacNeille completion of the poset (P,≤). So there exists an embedding

ϕ : (P,≤) → ((P, P,≤),≤) such that
a ≤ b ⇔ ϕ(a) ≤ ϕ(b) and ϕ(x) = ((x], [x)) for all x ∈ P .

Theorem 2.2. Let (P,≤) be a bounded poset and H ⊆ P a classification tree, then ϕ(H)
is a classification tree in (P, P,≤).

Proof. We have to prove, that ϕ(H) satisfies the three properties of the classification
trees.

(2) It is known that ϕ(1) is the largest element in (P, P,≤). As 1 ∈ H , we get
ϕ(1) ∈ ϕ(H).
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(1) Let a = ((x], [x)) ∈ ϕ(H), then a = ϕ(x) for some x ∈ H . We prove that
[a) ∩ ϕ(H) is a chain (which means, that for any elements b, c ∈ ϕ(H), b, c ≥ a we
have b ≤ c or c ≤ b).

Take some elements b, c ∈ ϕ(H). Then ∃ u, v ∈ H such that b = ((u], [u)), c =
((v], [v)) and b, c ≥ a. As ((u], [u)) ≥ ((x], [x)), ((v], [v)) ≥ ((x], [x)), we get (x] ≤ (u]
and (x] ≤ (v]. Then x ≤ u and x ≤ v. As u, v ∈ [x) ∩ H , we have u ≤ v or v ≤ u
and this implies that (u] ≤ (v] or (v] ≤ (u] holds. Then b = ((u], [u)) ≤ ((v], [v)) = c
or c = ((v], [v)) ≤ ((u], [u)) = b.

(3) We have to prove that (ϕ(H) ∪ ϕ(0),≤) is a ∧-semilattice of the lattice
(P, P,≤).
Take a, b ∈ ϕ(H) ∪ ϕ(0), then exists three cases:
(i) If a = ({0} , P ) = ϕ (0) or b = ({0} , P ) = ϕ (0), (ϕ(0) is the smallest element

of the lattice), then we get a ∧ b = ϕ(0).
(ii) Let a, b ∈ ϕ(H) with a ≤ b or b ≤ a, then a ∧ b = inf{a, b} ∈ {a, b}.
(iii) Let a, b ∈ ϕ(H) incomparable. Then there exist x, y ∈ H such that
a = ((x], [x)), b = ((y], [y)) and x,y are incomparable. As H is a classification

tree, in view of Proposition 1.2 we get xρy. As x,y are incomparable, then in view
of the definition of the relation ρ, we have x ∧ y = 0.

Hence a ∧ b = ((x], [x)) ∩ ((y], [y)) = ((x ∧ y], [x ∧ y)) = ({0} , P ) = ϕ(0) ∈
ϕ(H) ∪ ϕ(0).

Summarizing the above cases, we obtain that ϕ(H)∪ϕ(0) is a ∧-semilattice. �

Definition 2.6. ([3]) Let L be a lattice with the smallest element 0. A set O = {ai| i ∈
I}, I 
= ∅ of nonzero elements of L is called an orthogonal system, if ai ∧ aj = 0,
for all i 
= j, i, j ∈ I .

O is a maximal orthogonal system, if there is no other orthogonal system O′ of
L containing O as a proper subset.

Definition 2.7. Let L be a lattice with the smallest element 0 and S1 = {ai|i ∈ I},
I 
= ∅ and S2 = {bj |j ∈ J}, J 
= ∅ two orthogonal systems. We write S1 ≤ S2, if
for each i ∈ I there exists j(i) ∈ J such that ai ≤ bj(i). It is easy to see that ≤ is a
partial order.

Remark 2.1. Observe that S0 = {1} is the greatest orthogonal system of L.

Definition 2.8. A lattice L has a finite height, if the length of any chains of it is less
or equal then a fixed number l > 0.

Remark 2.2. It is easy to see that in the case of a lattice with finite height any sub-
poset (A,≤) of it has the following property: for any a ∈ A there exists a maximal
element ma in (A,≤) such that a ≤ ma.

Now we are prepared to prove our main theorem:

Theorem 2.3. Let L be a lattice with finite height and H ⊆ L a non-empty subset of
it. Then H =

⋃
λ∈Λ

Sλ, where {Sλ|λ ∈ Λ} is a chain of orthogonal systems containing

S0 = {1} if and only if H is a classification tree.

Proof. ” =⇒ ” : (2) Clearly 1 ∈ H , (so H has a largest element 1).
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(1) Take an element a ∈ H and any elements b, c ∈ [a) ∩ H . Then a ∈ Sλ0 ,
b ∈ Sλ1 , c ∈ Sλ2 for some λ0, λ1, λ2 ∈ Λ and clearly, a ≤ b, c implies Sλ0 ≤ Sλ1 and
Sλ0 ≤ Sλ2 .

Since Sλ, λ ∈ Λ is a chain, Sλ1 and Sλ2 must be comparable. Without lost of
generality we can assume Sλ1 ≤ Sλ2 .

We will prove by contradiction that b and c are comparable.
Indeed, assume that b and c are incomparable. Since Sλ1 ≤ Sλ2 there exists an

element d ∈ Sλ2such that b ≤ d. Since d 
= c and Sλ2 is an orthogonal system, we
get b ∧ c ≤ d ∧ c = 0 which is a contradiction, because of b ∧ c ≥ a 
= 0. Thus we
obtain that b and c are comparable.

(3) Take x, y ∈ H ∪ {0}. If x or y is 0, then x ∧ y = 0 ∈ H ∪ {0}. Suppose that
x, y 
= 0, then x, y ∈ H . If x and y are comparable, then x ∧ y ∈ {x, y} ⊆ H .

Now, assume that x, y are incomparable elements of H . In view of the definition
of H there exists λ, λ′ ∈ Λ such that x ∈ Sλ, y ∈ Sλ′ . Since {Sλ|λ ∈ Λ} is a chain,
without lost of generality we can assume Sλ ≤ Sλ′ . Hence there exists an element
z ∈ Sλ′ with x ≤ z. As x, y are incomparable we must have z 
= y. Then x ∧ y ≤
z ∧ y = 0, since Sλ′ is an orthogonal system. Hence x ∧ y = 0 ∈ H ∪ {0}.

Thus we obtain x ∧ y ∈ H ∪ {0} in each of the possible cases.
” ⇐= ” : Conversely, assume that H is a classification tree. Then in view of

Proposition 1.2, H is a ρ tolerance preclass.
Now, we construct systems of elements Sn, n = 0, 1, ... as follows: S0 = {1},

S1 =
{
a
(1)
i |i ∈ I(1)

}
consists of maximal elements of H\ {S0} (i.e. of all elements

a
(1)
i which satisfy a

(1)
i ≺ 1)

... Sn+1 =
{
a
(n+1)
i |i ∈ I(n+1)

}
contains all maximal elements of the set

H\ (S0 ∪ S1 ∪ ... ∪ Sn).
We prove by induction on n that S0 ≥ S1 ≥ ... ≥ Sn is a chain of orthogonal

systems.
Let n = 1. Clearly, S0 = {1} is an orthogonal system. As the elements of S1 are

maximal in H\ {S0} they must be incomparable. Since H is a ρ tolerance preclass,
for all ai, aj ∈ S1, i 
= j we get ai ∧ aj = 0. Hence S1 is an orthogonal system.
Clearly, S0 = {1} ≥ S1.

Now, assume that our hypothesis holds for n = k, and let us prove that it holds
for n = k + 1 too.

First, we observe that the set H\ (S0 ∪ S1 ∪ ... ∪ Sk) is also a ρ tolerance pre-
class and Sk+1 ⊆ H\ (S0 ∪ S1 ∪ ... ∪ Sk−1). Since Sk contains maximal elements of
H\ (S0 ∪ S1 ∪ ... ∪ Sk−1), for any a

(k+1)
i ∈ Sk+1 there exists an a

(k)
l ∈ Sk such that

a
(k+1)
i < a

(k)
l .

Now, take any elements a
(k+1)
i a

(k+1)
j ∈ Sk+1, i 
= j. Then there exists two cases:

- there exists an element a
(k)
l ∈ Sk such that a

(k+1)
i , a

(k+1)
j < a

(k)
l . As

a
(k+1)
i , a

(k+1)
j

are incomparable and
(
a
(k+1)
i , a

(k+1)
j

)
∈ ρ, we obtain a

(k+1)
i ∧ a

(k+1)
j = 0, proving

that the elements are orthogonal.
- if a

(k+1)
i , a

(k+1)
j has no common upperbound in Sk, by construction there exists
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a
(k)
m , a

(k)
p ∈ Sk, m 
= p, m, p ∈ I(k) such that a

(k+1)
i < a

(k)
m and a

(k+1)
j < a

(k)
p . As

by induction hypothesis a
(k)
m ∧ a

(k)
p = 0 we get a

(k+1)
i ∧ a

(k+1)
j ≤ a

(k)
m ∧ a

(k)
p = 0 and

this implies that Sk+1 =
{

a
(k+1)
i |i ∈ I(k+1)

}
is an orthogonal system.

Observe, that in both of above cases Sk ≥ Sk+1. Hence S0 ≥ S1 ≥ ... ≥ Sk ≥
Sk+1 is a chain. Thus we proved by induction that S0 ≥ S1 ≥ ... ≥ Sk ≥ Sk+1 ≥ ...
is a chain of orthogonal systems.

Observe that this chain of systems of orthogonal elements also contains at least
one decreasing chain of elements: 1 > a

(1)
i1

> a
(2)
i2

> ... > a
(k+1)
ik+1

> ...

As in H the length of any chain is less or equal then l, the construction process
ends in at most l-steps, let say in q ≤ l, q ∈ N steps.

Then H∗ = H\ (S0 ∪ S1 ∪ ... ∪ Sq) = ∅, otherwise H∗ has maximal elements
and we can continue the process. Therefore, we obtain H = q

n=0Sn. �
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