Generalization of classification trees for a poset

LAURA VERES

ABSTRACT. The present article studies directed trees and classification trees defined in a partially ordered set. In the first chapter we recall the notion of the classification trees for a poset, and the basic notions for our investigations. In the second chapter we analyse the relations between classification trees and tolerance classes, we present a new construction of classification trees, and also we discuss the relation between classification trees and orthogonal systems.

1. INTRODUCTION

First, we recall some definitions which were introduced in article [7]:

Definition 1.1. ([7]) Let (P, \leq) be a non-empty partially ordered set (poset):

(i) P is called a meet-semilattice if for any subset of P with two elements exists their infimum;

(ii) P is a lattice if the supremum and the infimum of any two elemented subset of P there exists in P. P is called a complete lattice if the supremum and the infimum exists for any subset of P;

(iii) *P* is called bounded if it has a largest element 1 and a smallest element 0.

Definition 1.2. ([7]) Let (P, \leq) be a poset with the largest element $1 \in P$ and H a non-empty subset of P, then

(i) *H* is a directed forest, if $[x) \cap H$ is a chain for any $x \in H$; (1)

(ii) a directed forest *H* is called directed tree if $1 \in H$. (2)

Definition 1.3. ([7]) Let (P, \leq) be a bounded poset and $H \subseteq P$ a directed tree in (P, \leq) . *H* is a classification tree, if $(H \cup \{0\}, \leq_{H \cup \{0\}})$ is a meet-semilattice. (3)

H is a maximal classification tree, if there is no other classification tree which contains it as a proper subset.

Proposition 1.1. In every poset the meet of any non-empty family of directed forests is also a directed forest.

Proof. Let $H_j, j \in J$ be a set of directed forests and $x \in \bigcap_{j \in J} H_j$. Then $[x) \cap (\bigcap_{j \in J} H_j) = \bigcap_{j \in J} ([x) \cap H_j)$ is a chain (the meet of chains is empty or is a chain). It can not be empty, because always contains x. □

We will introduce a relation ρ as follows: For all $a, b \in H$ we have $a\rho b \Leftrightarrow a < b$ or b < a or $a \land b = 0$.

Received: 5.06.2007. In revised form: 23.11.2007.

²⁰⁰⁰ Mathematics Subject Classification. 06A06, 06A23, 06B05, 06B15, 06B99.

Key words and phrases. Classification trees, tolerance classes, context, concept lattices, Dedekind-MacNeille completion, orthogonal systems.

It is obvious that the relation ρ is reflexive and symmetric, therefore it is a tolerance relation.

Definition 1.4. ([6]) Let (P, \leq) be a poset, $B \subseteq P$ a subset and ρ a tolerance relation on P, then

(i) *B* is tolerance preclass, if for each $x, y \in B$ we have $x \rho y$;

(ii) *B* is a tolerance class, if *B* is maximal for the previous property, i.e. for all $z \notin B$ exists $b \in B$ such that $(z, b) \notin \rho$;

(iii) the set $C_{\rho} = \{c \in P | c\rho a \text{ for all } a \in P\}$ is called the tolerance center of *P*.

It is well known (see [6]), that the tolerance center is the meet of all tolerance classes, i.e. if K_i is a set of ρ tolerance classes, then $C_{\rho} = \bigcap_{i \in I} K_i$.

We present a relation between classification trees and tolerance preclass proved in paper [7] and we give a better proof of it.

Proposition 1.2. ([7]) Let (P, \leq) be a bounded poset and $H \subseteq P$ a subset containing 1. *H* is a classification tree if and only if *H* is a ρ tolerance preclass.

Proof. " \implies ": We have to prove that any two elements of *H* are in relation ρ . Take $a, b \in H$. If $a \wedge b = 0$, then we get $a\rho b$.

If $a \wedge b = c \neq 0$, then $a, b \geq c$ and this implies $a, b \in [c) \cap H$. Now, in view of property (1), *a* and *b* must be comparable. So, we get again $a\rho b$.

" \Leftarrow " : Conversely, assume that *H* is a ρ tolerance preclass with the largest element 1. We have to prove the three properties of the classification trees.

(2) is satisfied since $1 \in H$.

(1) Let $h \in H$. In order to prove that $[h) \cap H = \{c \in H | c \ge h\}$ is a chain, take some $c_1, c_2 \in H$ with $c_1, c_2 \ge h$. Then $c_1 \wedge c_2 \ne 0$. As H is a ρ tolerance preclass we have also $c_1\rho c_2$. Hence, by the definition of ρ we obtain $c_1 \ge c_2$ or $c_2 \ge c_1$.

(3) For all $a, b \in H$ we have $a\rho b$. In view of the definition of ρ we get

 $a \land b \in \{a, b, 0\} \subseteq H \cup \{0\}$. Hence $H \cup \{0\}$ is a \land -semilattice.

Finally, we obtain that *H* is a classification tree.

We present an other relation between classification trees and tolerance classes in the following theorem:

Theorem 1.1. Let (P, \leq) be a bounded poset. A non-empty subset $H \subseteq P$ is a ρ tolerance class if and only if H is a maximal classification tree.

Proof. " \implies " : Let *H* be a ρ tolerance class. Since $h\rho 1$ holds for all $h \in H$, we get $1 \in H$. Hence using Proposition 1.2, we obtain that *H* is a classification tree.

We will prove by contradiction that H is a maximal classification tree.

If *H* is not a maximal classification tree, then there exists a classification tree $K \subseteq P$, with $H \subseteq K$, $K \neq H$. *H* is a ρ tolerance class, in view of Proposition 1.2 *K* is a ρ tolerance preclass and also $H \subseteq K$, $K \neq H$. As this is a contradiction, we get that *H* is a maximal classification tree.

" \Leftarrow " : Assume that *H* is a maximal classification tree. In view of Proposition 1.2 *H* is a ρ tolerance preclass. We will prove, that *H* is a tolerance class, i.e. it is a maximal tolerance preclass. Suppose that $H \subseteq K$, $K \neq H$ for a tolerance class *K*. Then *K* is a classification tree. As *H* is a maximal classification tree, $H \subseteq K$, $K \neq H$ is a contradiction.

Laura Veres

2. CLASSIFICATION TREES AND ORTHOGONAL SYSTEMS

A context (see [2],[4],[5]) is a triple (G, M, I) where G and M are sets and $I \subseteq G \times M$ is a binary relation. The elements of G and M are called objects and respectively attributes of the context. The relation gI m means that the object g has the attribute m. A small context can be easily represented by a cross table, i.e., by a rectangular table, the rows of which are headed by the object names and the columns are headed by the attribute names. A cross in the intersection of the row g and the column m, means that the object g has the attribute m.

For all sets $A \subseteq G$ and $B \subseteq M$ we define

 $A' = \{ m \in M \mid g \ I \ m \text{ for all } g \in A \},\$

 $B' = \{ g \in G \mid g \ I \ m \text{ for all } m \in B \}.$

A concept of the context (G, M, I) is a pair (A, B), in which A' = B and B' = A, and $A \subseteq G, B \subseteq M$. (G, M, I) denotes the set of all concepts of the context (G, M, I).

(G, M, I) can be endowed with structure of a complete lattice defining the join and meet of concepts as follows:

$$\bigwedge_{i \in I} (A_i, B_i) = \left(\bigcup_{i \in I} A_i, \left(\bigcap_{i \in I} B_i \right)'' \right)$$
$$\bigvee_{i \in I} (A_i, B_i) = \left(\left(\bigcap_{i \in I} A_i \right)'', \bigcup_{i \in I} B_i \right)$$

The lattice $((G, M, I), \land, \lor)$ is called the *concept lattice* of the context (G, M, I).

Definition 2.5. ([1]) (i) Let (P, \leq) be a poset and $h : P \to P$ a map. The map h is called closure operator if it is monotone, extensive and idempotent.

(ii) A closure system on a set A is a set of subsets which contains A and is closed under intersections. Formally, $\Phi \subseteq \wp(A)$ is a closure system, if $A \in \Phi$ and $S \subseteq \Phi$ implies $\cap S \in \Phi$.

(iii) Let (A, \leq) be a poset. For $X \subseteq A$ we will denote with X^* and X_* the set of all upper and lower bounds of X. A closure system of the closure operator $\varphi : \wp(A) \to \wp(A), X \to (X^*)_*$ is called Dedekind-MacNeille completion of the poset (A, \leq) .

Let (P, \leq) be a poset, (P, P, \leq) a corresponding context and (P, P, \leq) the concept lattice of this context. It is well known, that the concept lattice (P, P, \leq) is the Dedekind-MacNeille completion of the poset (P, \leq) . So there exists an embedding $\varphi: (P, \leq) \rightarrow ((P, P, \leq), \leq)$ such that

 $a \le b \Leftrightarrow \varphi(a) \le \varphi(b)$ and $\varphi(x) = ((x], [x))$ for all $x \in P$.

Theorem 2.2. Let (P, \leq) be a bounded poset and $H \subseteq P$ a classification tree, then $\varphi(H)$ is a classification tree in (P, P, \leq) .

Proof. We have to prove, that $\varphi(H)$ satisfies the three properties of the classification trees.

(2) It is known that $\varphi(1)$ is the largest element in (P, P, \leq) . As $1 \in H$, we get $\varphi(1) \in \varphi(H)$.

(1) Let $a = ((x], [x)) \in \varphi(H)$, then $a = \varphi(x)$ for some $x \in H$. We prove that $[a) \cap \varphi(H)$ is a chain (which means, that for any elements $b, c \in \varphi(H)$, $b, c \ge a$ we have $b \le c$ or $c \le b$).

Take some elements $b, c \in \varphi(H)$. Then $\exists u, v \in H$ such that b = ((u], [u)), c = ((v], [v)) and $b, c \ge a$. As $((u], [u)) \ge ((x], [x)), ((v], [v)) \ge ((x], [x))$, we get $(x] \le (u]$ and $(x] \le (v]$. Then $x \le u$ and $x \le v$. As $u, v \in [x) \cap H$, we have $u \le v$ or $v \le u$ and this implies that $(u] \le (v]$ or $(v] \le (u]$ holds. Then $b = ((u], [u)) \le ((v], [v)) = c$ or $c = ((v], [v)) \le ((u], [u)) = b$.

(3) We have to prove that $(\varphi(H) \cup \varphi(0), \leq)$ is a \wedge -semilattice of the lattice (P, P, \leq) .

Take $a, b \in \varphi(H) \cup \varphi(0)$, then exists three cases:

(i) If $a = (\{0\}, P) = \varphi(0)$ or $b = (\{0\}, P) = \varphi(0)$, $(\varphi(0)$ is the smallest element of the lattice), then we get $a \wedge b = \varphi(0)$.

(ii) Let $a, b \in \varphi(H)$ with $a \leq b$ or $b \leq a$, then $a \wedge b = \inf\{a, b\} \in \{a, b\}$.

(iii) Let $a, b \in \varphi(H)$ incomparable. Then there exist $x, y \in H$ such that

a = ((x], [x)), b = ((y], [y)) and x, y are incomparable. As H is a classification tree, in view of Proposition 1.2 we get $x \rho y$. As x, y are incomparable, then in view of the definition of the relation ρ , we have $x \wedge y = 0$.

Hence $a \wedge b = ((x], [x)) \cap ((y], [y)) = ((x \wedge y], [x \wedge y)) = (\{0\}, P) = \varphi(0) \in \varphi(H) \cup \varphi(0).$

Summarizing the above cases, we obtain that $\varphi(H) \cup \varphi(0)$ is a \wedge -semilattice. \Box

Definition 2.6. ([3]) Let *L* be a lattice with the smallest element 0. A set $O = \{a_i | i \in \mathbb{I}\}$, $I \neq \emptyset$ of nonzero elements of *L* is called an orthogonal system, if $a_i \wedge a_j = 0$, for all $i \neq j$, $i, j \in I$.

O is a maximal orthogonal system, if there is no other orthogonal system O' of *L* containing *O* as a proper subset.

Definition 2.7. Let *L* be a lattice with the smallest element 0 and $S_1 = \{a_i | i \in I\}$, $I \neq \emptyset$ and $S_2 = \{b_j | j \in J\}$, $J \neq \emptyset$ two orthogonal systems. We write $S_1 \leq S_2$, if for each $i \in I$ there exists $j(i) \in J$ such that $a_i \leq b_{j(i)}$. It is easy to see that \leq is a partial order.

Remark 2.1. Observe that $S_0 = \{1\}$ is the greatest orthogonal system of *L*.

Definition 2.8. A lattice *L* has a finite height, if the length of any chains of it is less or equal then a fixed number l > 0.

Remark 2.2. It is easy to see that in the case of a lattice with finite height any subposet (A, \leq) of it has the following property: for any $a \in A$ there exists a maximal element m_a in (A, \leq) such that $a \leq m_a$.

Now we are prepared to prove our main theorem:

Theorem 2.3. Let *L* be a lattice with finite height and $H \subseteq L$ a non-empty subset of it. Then $H = \bigcup_{\lambda \in \Lambda} S_{\lambda}$, where $\{S_{\lambda} | \lambda \in \Lambda\}$ is a chain of orthogonal systems containing $S_0 = \{1\}$ if and only if *H* is a classification tree.

 $S_0 = \{1\}$ if and only if *H* is a classification free.

Proof. " \implies " : (2) Clearly $1 \in H$, (so *H* has a largest element 1).

Laura Veres

(1) Take an element $a \in H$ and any elements $b, c \in [a) \cap H$. Then $a \in S_{\lambda_0}$, $b \in S_{\lambda_1}$, $c \in S_{\lambda_2}$ for some $\lambda_0, \lambda_1, \lambda_2 \in \Lambda$ and clearly, $a \leq b, c$ implies $S_{\lambda_0} \leq S_{\lambda_1}$ and $S_{\lambda_0} \leq S_{\lambda_2}$.

Since $S_{\lambda}, \lambda \in \Lambda$ is a chain, S_{λ_1} and S_{λ_2} must be comparable. Without lost of generality we can assume $S_{\lambda_1} \leq S_{\lambda_2}$.

We will prove by contradiction that *b* and *c* are comparable.

Indeed, assume that b and c are incomparable. Since $S_{\lambda_1} \leq S_{\lambda_2}$ there exists an element $d \in S_{\lambda_2}$ such that $b \leq d$. Since $d \neq c$ and S_{λ_2} is an orthogonal system, we get $b \wedge c \leq d \wedge c = 0$ which is a contradiction, because of $b \wedge c \geq a \neq 0$. Thus we obtain that b and c are comparable.

(3) Take $x, y \in H \cup \{0\}$. If x or y is 0, then $x \wedge y = 0 \in H \cup \{0\}$. Suppose that $x, y \neq 0$, then $x, y \in H$. If x and y are comparable, then $x \wedge y \in \{x, y\} \subseteq H$.

Now, assume that x, y are incomparable elements of H. In view of the definition of H there exists $\lambda, \lambda' \in \Lambda$ such that $x \in S_{\lambda}, y \in S_{\lambda'}$. Since $\{S_{\lambda} | \lambda \in \Lambda\}$ is a chain, without lost of generality we can assume $S_{\lambda} \leq S_{\lambda'}$. Hence there exists an element $z \in S_{\lambda'}$ with $x \leq z$. As x, y are incomparable we must have $z \neq y$. Then $x \wedge y \leq z \wedge y = 0$, since $S_{\lambda'}$ is an orthogonal system. Hence $x \wedge y = 0 \in H \cup \{0\}$.

Thus we obtain $x \land y \in H \cup \{0\}$ in each of the possible cases.

" \Leftarrow " : Conversely, assume that *H* is a classification tree. Then in view of Proposition 1.2, *H* is a ρ tolerance preclass.

Now, we construct systems of elements S_n , n = 0, 1, ... as follows: $S_0 = \{1\}$, $S_1 = \left\{a_i^{(1)} | i \in I^{(1)}\right\}$ consists of maximal elements of $H \setminus \{S_0\}$ (i.e. of all elements $a_i^{(1)}$ which satisfy $a_i^{(1)} \prec 1$)

... $S_{n+1} = \left\{a_i^{(n+1)} | i \in I^{(n+1)}\right\}$ contains all maximal elements of the set $H \setminus (S_0 \cup S_1 \cup ... \cup S_n)$.

We prove by induction on n that $S_0 \geq S_1 \geq \ldots \geq S_n$ is a chain of orthogonal systems.

Let n = 1. Clearly, $S_0 = \{1\}$ is an orthogonal system. As the elements of S_1 are maximal in $H \setminus \{S_0\}$ they must be incomparable. Since H is a ρ tolerance preclass, for all $a_i, a_j \in S_1, i \neq j$ we get $a_i \wedge a_j = 0$. Hence S_1 is an orthogonal system. Clearly, $S_0 = \{1\} \geq S_1$.

Now, assume that our hypothesis holds for n = k, and let us prove that it holds for n = k + 1 too.

First, we observe that the set $H \setminus (S_0 \cup S_1 \cup ... \cup S_k)$ is also a ρ tolerance preclass and $S_{k+1} \subseteq H \setminus (S_0 \cup S_1 \cup ... \cup S_{k-1})$. Since S_k contains maximal elements of $H \setminus (S_0 \cup S_1 \cup ... \cup S_{k-1})$, for any $a_i^{(k+1)} \in S_{k+1}$ there exists an $a_l^{(k)} \in S_k$ such that $a_i^{(k+1)} < a_l^{(k)}$.

Now, take any elements $a_i^{(k+1)}a_j^{(k+1)} \in S_{k+1}$, $i \neq j$. Then there exists two cases: - there exists an element $a_l^{(k)} \in S_k$ such that $a_i^{(k+1)}, a_j^{(k+1)} < a_l^{(k)}$. As $a_i^{(k+1)}, a_j^{(k+1)}$

are incomparable and $\left(a_i^{(k+1)}, a_j^{(k+1)}\right) \in \rho$, we obtain $a_i^{(k+1)} \wedge a_j^{(k+1)} = 0$, proving that the elements are orthogonal.

- if $a_i^{(k+1)}, a_i^{(k+1)}$ has no common upperbound in S_k , by construction there exists

 $a_m^{(k)}, a_p^{(k)} \in S_k, m \neq p, m, p \in I^{(k)}$ such that $a_i^{(k+1)} < a_m^{(k)}$ and $a_j^{(k+1)} < a_p^{(k)}$. As by induction hypothesis $a_m^{(k)} \wedge a_p^{(k)} = 0$ we get $a_i^{(k+1)} \wedge a_j^{(k+1)} \le a_m^{(k)} \wedge a_p^{(k)} = 0$ and this implies that $S_{k+1} = \left\{a_i^{(k+1)} | i \in I^{(k+1)}\right\}$ is an orthogonal system.

Observe, that in both of above cases $S_k \ge S_{k+1}$. Hence $S_0 \ge S_1 \ge ... \ge S_k \ge S_{k+1}$ is a chain. Thus we proved by induction that $S_0 \ge S_1 \ge ... \ge S_k \ge S_{k+1} \ge ...$ is a chain of orthogonal systems.

Observe that this chain of systems of orthogonal elements also contains at least one decreasing chain of elements: $1 > a_{i_1}^{(1)} > a_{i_2}^{(2)} > \ldots > a_{i_{k+1}}^{(k+1)} > \ldots$ As in *H* the length of any chain is less or equal then *l*, the construction process

ends in at most *l*-steps, let say in $q \leq l, q \in \mathbb{N}$ steps.

Then $H^* = H \setminus (S_0 \cup S_1 \cup ... \cup S_q) = \emptyset$, otherwise H^* has maximal elements and we can continue the process. Therefore, we obtain $H = {}^{q}_{n=0}S_{n}$.

REFERENCES

- [1] Czédli, G., Hálóelmélet, Szeged, 1996
- [2] Ganter, B., Wille, R., Formal Concept Analysis, Mathematical Foudations. Springer Verlag, Berlin Heidelberg New York (1999)
- [3] Körei, A. and Radeleczki, S., Box elements in a concept lattice, Contribution to ICFCA 2006, Editors Bernhard Ganter, Leonard Kwuida, Verlag Allgemeine Wissenschaft, Drezda 2006 February 12-17, p. 41-55
- [4] Radeleczki, S., Classification systems and their lattice, Discussiones Mathematicae, General Algebra and Applications 22 (2002), p. 167-181
- [5] Radeleczki, S., Tóth T., Fogalomhálók alkalmazása a csoporttechnológiában, Osztályozó rendszerek matematikai alapjainak összehasonlító vizsgálata, 2. Kutat ási jelentés Miskolc, 2001 március
- [6] Ju.A. Srejder, Egyenlőség, hasonlóság, rendezés, Gondolat (1975), Budapest
- [7] Vereş, Laura, Classification trees and orthogonal systems, International Scientific Conference micro-CAD2007, Miskolc, 2007, Vol G, p. 63-68

UNIVERSITY OF MISKOLC INSTITUTE OF MATHEMATICS MISKOLC-EGYETEMVÁROS 3515 HUNGARY E-mail address: lauracicu@yahoo.com