Generalization of classification trees for a poset

LaURA Veres

Abstract

The present article studies directed trees and classification trees defined in a partially ordered set. In the first chapter we recall the notion of the classification trees for a poset, and the basic notions for our investigations. In the second chapter we analyse the relations between classification trees and tolerance classes, we present a new construction of classification trees, and also we discuss the relation between classification trees and orthogonal systems.

1. Introduction

First, we recall some definitions which were introduced in article [7]:
Definition 1.1. ([7]) Let (P, \leq) be a non-empty partially ordered set (poset):
(i) P is called a meet-semilattice if for any subset of P with two elements exists their infimum;
(ii) P is a lattice if the supremum and the infimum of any two elemented subset of P there exists in $P . P$ is called a complete lattice if the supremum and the infimum exists for any subset of P;
(iii) P is called bounded if it has a largest element 1 and a smallest element 0 .

Definition 1.2. ([7]) Let (P, \leq) be a poset with the largest element $1 \in P$ and H a non-empty subset of P, then
(i) H is a directed forest, if $[x) \cap H$ is a chain for any $x \in H$; (1)
(ii) a directed forest H is called directed tree if $1 \in H$. (2)

Definition 1.3. ([7]) Let (P, \leq) be a bounded poset and $H \subseteq P$ a directed tree in $(P, \leq) . H$ is a classification tree, if $\left(H \cup\{0\}, \leq_{H \cup\{0\}}\right)$ is a meet-semilattice. (3)
H is a maximal classification tree, if there is no other classification tree which contains it as a proper subset.

Proposition 1.1. In every poset the meet of any non-empty family of directed forests is also a directed forest.
Proof. Let $H_{j}, j \in J$ be a set of directed forests and $x \in \cap_{j \in J} H_{j}$. Then $[x) \cap\left(\cap_{j \in J} H_{j}\right)=$ $\cap_{j \in J}\left([x) \cap H_{j}\right)$ is a chain (the meet of chains is empty or is a chain). It can not be empty, because always contains x.

We will introduce a relation ρ as follows:
For all $a, b \in H$ we have $a \rho b \Leftrightarrow a \leq b$ or $b \leq a$ or $a \wedge b=0$.

[^0]It is obvious that the relation ρ is reflexive and symmetric, therefore it is a tolerance relation.
Definition 1.4. ([6]) Let (P, \leq) be a poset, $B \subseteq P$ a subset and ρ a tolerance relation on P, then
(i) B is tolerance preclass, if for each $x, y \in B$ we have $x \rho y$;
(ii) B is a tolerance class, if B is maximal for the previous property, i.e. for all $z \notin B$ exists $b \in B$ such that $(z, b) \notin \rho$;
(iii) the set $C_{\rho}=\{c \in P \mid c \rho a$ for all $a \in P\}$ is called the tolerance center of P.

It is well known (see [6]), that the tolerance center is the meet of all tolerance classes, i.e. if K_{i} is a set of ρ tolerance classes, then $C_{\rho}=\bigcap_{i \in I} K_{i}$.

We present a relation between classification trees and tolerance preclass proved in paper [7] and we give a better proof of it.
Proposition 1.2. ([7]) Let (P, \leq) be a bounded poset and $H \subseteq P$ a subset containing 1. H is a classification tree if and only if H is a ρ tolerance preclass.
Proof." $\Longrightarrow "$: We have to prove that any two elements of H are in relation ρ.
Take $a, b \in H$. If $a \wedge b=0$, then we get $a \rho b$.
If $a \wedge b=c \neq 0$, then $a, b \geq c$ and this implies $a, b \in[c) \cap H$. Now, in view of property (1), a and b must be comparable. So, we get again $a \rho b$.
$" \Longleftarrow "$: Conversely, assume that H is a ρ tolerance preclass with the largest element 1. We have to prove the three properties of the classification trees.
(2) is satisfied since $1 \in H$.
(1) Let $h \in H$. In order to prove that $[h) \cap H=\{c \in H \mid c \geq h\}$ is a chain, take some $c_{1}, c_{2} \in H$ with $c_{1}, c_{2} \geq h$. Then $c_{1} \wedge c_{2} \neq 0$. As H is a ρ tolerance preclass we have also $c_{1} \rho c_{2}$. Hence, by the definition of ρ we obtain $c_{1} \geq c_{2}$ or $c_{2} \geq c_{1}$.
(3) For all $a, b \in H$ we have $a \rho b$. In view of the definition of ρ we get
$a \wedge b \in\{a, b, 0\} \subseteq H \cup\{0\}$. Hence $H \cup\{0\}$ is a \wedge-semilattice.
Finally, we obtain that H is a classification tree.
We present an other relation between classification trees and tolerance classes in the following theorem:
Theorem 1.1. Let (P, \leq) be a bounded poset. A non-empty subset $H \subseteq P$ is a ρ tolerance class if and only if H is a maximal classification tree.
Proof. " $\Longrightarrow "$: Let H be a ρ tolerance class. Since $h \rho 1$ holds for all $h \in H$, we get $1 \in H$. Hence using Proposition 1.2, we obtain that H is a classification tree.

We will prove by contradiction that H is a maximal classification tree.
If H is not a maximal classification tree, then there exists a classification tree $K \subseteq P$, with $H \subseteq K, K \neq H . H$ is a ρ tolerance class, in view of Proposition $1.2 K$ is a ρ tolerance preclass and also $H \subseteq K, K \neq H$. As this is a contradiction, we get that H is a maximal classification tree.
$" \Longleftarrow "$: Assume that H is a maximal classification tree. In view of Proposition 1.2 H is a ρ tolerance preclass. We will prove, that H is a tolerance class, i.e. it is a maximal tolerance preclass. Suppose that $H \subseteq K, K \neq H$ for a tolerance class K. Then K is a classification tree. As H is a maximal classification tree, $H \subseteq K$, $K \neq H$ is a contradiction.

2. CLASSIFICATION TREES AND ORTHOGONAL SYSTEMS

A context (see [2],[4],[5]) is a triple (G, M, I) where G and M are sets and $I \subseteq$ $G \times M$ is a binary relation. The elements of G and M are called objects and respectively attributes of the context. The relation $g I m$ means that the object g has the attribute m. A small context can be easily represented by a cross table, i.e., by a rectangular table, the rows of which are headed by the object names and the columns are headed by the attribute names. A cross in the intersection of the row g and the column m, means that the object g has the attribute m.

For all sets $A \subseteq G$ and $B \subseteq M$ we define

$$
\begin{aligned}
& A^{\prime}=\{m \in M \mid g I m \text { for all } g \in A\} \\
& B^{\prime}=\{g \in G \mid g I m \text { for all } m \in B\}
\end{aligned}
$$

A concept of the context (G, M, I) is a pair (A, B), in which $A^{\prime}=B$ and $B^{\prime}=$ A, and $A \subseteq G, B \subseteq M .(G, M, I)$ denotes the set of all concepts of the context (G, M, I).
(G, M, I) can be endowed with structure of a complete lattice defining the join and meet of concepts as follows:

$$
\begin{aligned}
& \wedge_{i \in I}^{\wedge}\left(A_{i}, B_{i}\right)=\left(\cup_{i \in I} A_{i},\left(\cap_{i \in I}^{\cap} B_{i}\right)^{\prime \prime}\right) \\
& \underset{i \in I}{\vee}\left(A_{i}, B_{i}\right)=\left(\left(\cap_{i \in I} A_{i}\right)^{\prime \prime}, \underset{i \in I}{\cup} B_{i}\right)
\end{aligned}
$$

The lattice $((G, M, I), \wedge, \vee)$ is called the concept lattice of the context (G, M, I).
Definition 2.5. ([1]) (i) Let (P, \leq) be a poset and $h: P \rightarrow P$ a map. The map h is called closure operator if it is monotone, extensive and idempotent.
(ii) A closure system on a set A is a set of subsets which contains A and is closed under intersections. Formally, $\Phi \subseteq \wp(A)$ is a closure system, if $A \in \Phi$ and $S \subseteq \Phi$ implies $\cap S \in \Phi$.
(iii) Let (A, \leq) be a poset. For $X \subseteq A$ we will denote with X^{*} and X_{*} the set of all upper and lower bounds of X. A closure system of the closure operator $\varphi: \wp(A) \rightarrow \wp(A), X \rightarrow\left(X^{*}\right)_{*}$ is called Dedekind-MacNeille completion of the $\operatorname{poset}(A, \leq)$.

Let (P, \leq) be a poset, (P, P, \leq) a corresponding context and (P, P, \leq) the concept lattice of this context. It is well known, that the concept lattice (P, P, \leq) is the Dedekind-MacNeille completion of the poset (P, \leq). So there exists an embedding
$\varphi:(P, \leq) \rightarrow((P, P, \leq), \leq)$ such that
$a \leq b \Leftrightarrow \varphi(a) \leq \varphi(b)$ and $\varphi(x)=((x],[x))$ for all $x \in P$.
Theorem 2.2. Let (P, \leq) be a bounded poset and $H \subseteq P$ a classification tree, then $\varphi(H)$ is a classification tree in (P, P, \leq).

Proof. We have to prove, that $\varphi(H)$ satisfies the three properties of the classification trees.
(2) It is known that $\varphi(1)$ is the largest element in (P, P, \leq). As $1 \in H$, we get $\varphi(1) \in \varphi(H)$.
(1) Let $a=((x],[x)) \in \varphi(H)$, then $a=\varphi(x)$ for some $x \in H$. We prove that $[a) \cap \varphi(H)$ is a chain (which means, that for any elements $b, c \in \varphi(H), b, c \geq a$ we have $b \leq c$ or $c \leq b$).

Take some elements $b, c \in \varphi(H)$. Then $\exists u, v \in H$ such that $b=((u],[u)), c=$ $((v],[v))$ and $b, c \geq a$. As $((u],[u)) \geq((x],[x)),((v],[v)) \geq((x],[x))$, we get $(x] \leq(u]$ and $(x] \leq(v]$. Then $x \leq u$ and $x \leq v$. As $u, v \in[x) \cap H$, we have $u \leq v$ or $v \leq u$ and this implies that $(u] \leq(v]$ or $(v] \leq(u]$ holds. Then $b=((u],[u)) \leq((v],[v))=c$ or $c=((v],[v)) \leq((u],[u))=b$.
(3) We have to prove that $(\varphi(H) \cup \varphi(0), \leq)$ is a \wedge-semilattice of the lattice (P, P, \leq).
Take $a, b \in \varphi(H) \cup \varphi(0)$, then exists three cases:
(i) If $a=(\{0\}, P)=\varphi(0)$ or $b=(\{0\}, P)=\varphi(0),(\varphi(0)$ is the smallest element of the lattice), then we get $a \wedge b=\varphi(0)$.
(ii) Let $a, b \in \varphi(H)$ with $a \leq b$ or $b \leq a$, then $a \wedge b=\inf \{a, b\} \in\{a, b\}$.
(iii) Let $a, b \in \varphi(H)$ incomparable. Then there exist $x, y \in H$ such that
$a=((x],[x)), b=((y],[y))$ and x, y are incomparable. As H is a classification tree, in view of Proposition 1.2 we get $x \rho y$. As x, y are incomparable, then in view of the definition of the relation ρ, we have $x \wedge y=0$.

Hence $a \wedge b=((x],[x)) \cap((y],[y))=((x \wedge y],[x \wedge y))=(\{0\}, P)=\varphi(0) \in$ $\varphi(H) \cup \varphi(0)$.

Summarizing the above cases, we obtain that $\varphi(H) \cup \varphi(0)$ is a \wedge-semilattice.
Definition 2.6. ([3]) Let L be a lattice with the smallest element 0 . A set $O=\left\{a_{i} \mid i \in\right.$ $\mathbb{I}\}, I \neq \varnothing$ of nonzero elements of L is called an orthogonal system, if $a_{i} \wedge a_{j}=0$, for all $i \neq j, i, j \in I$.
O is a maximal orthogonal system, if there is no other orthogonal system O^{\prime} of L containing O as a proper subset.

Definition 2.7. Let L be a lattice with the smallest element 0 and $S_{1}=\left\{a_{i} \mid i \in I\right\}$, $I \neq \varnothing$ and $S_{2}=\left\{b_{j} \mid j \in J\right\}, J \neq \varnothing$ two orthogonal systems. We write $S_{1} \leq S_{2}$, if for each $i \in I$ there exists $j(i) \in J$ such that $a_{i} \leq b_{j(i)}$. It is easy to see that \leq is a partial order.
Remark 2.1. Observe that $S_{0}=\{1\}$ is the greatest orthogonal system of L.
Definition 2.8. A lattice L has a finite height, if the length of any chains of it is less or equal then a fixed number $l>0$.
Remark 2.2. It is easy to see that in the case of a lattice with finite height any subposet (A, \leq) of it has the following property: for any $a \in A$ there exists a maximal element m_{a} in (A, \leq) such that $a \leq m_{a}$.

Now we are prepared to prove our main theorem:
Theorem 2.3. Let L be a lattice with finite height and $H \subseteq L$ a non-empty subset of it. Then $H=\bigcup_{\lambda \in \Lambda} S_{\lambda}$, where $\left\{S_{\lambda} \mid \lambda \in \Lambda\right\}$ is a chain of orthogonal systems containing $S_{0}=\{1\}$ if and only if H is a classification tree.

Proof. " $\Longrightarrow ":(2)$ Clearly $1 \in H$, (so H has a largest element 1).
(1) Take an element $a \in H$ and any elements $b, c \in[a) \cap H$. Then $a \in S_{\lambda_{0}}$, $b \in S_{\lambda_{1}}, c \in S_{\lambda_{2}}$ for some $\lambda_{0}, \lambda_{1}, \lambda_{2} \in \Lambda$ and clearly, $a \leq b, c$ implies $S_{\lambda_{0}} \leq S_{\lambda_{1}}$ and $S_{\lambda_{0}} \leq S_{\lambda_{2}}$.

Since $S_{\lambda}, \lambda \in \Lambda$ is a chain, $S_{\lambda_{1}}$ and $S_{\lambda_{2}}$ must be comparable. Without lost of generality we can assume $S_{\lambda_{1}} \leq S_{\lambda_{2}}$.

We will prove by contradiction that b and c are comparable.
Indeed, assume that b and c are incomparable. Since $S_{\lambda_{1}} \leq S_{\lambda_{2}}$ there exists an element $d \in S_{\lambda_{2}}$ such that $b \leq d$. Since $d \neq c$ and $S_{\lambda_{2}}$ is an orthogonal system, we get $b \wedge c \leq d \wedge c=0$ which is a contradiction, because of $b \wedge c \geq a \neq 0$. Thus we obtain that b and c are comparable.
(3) Take $x, y \in H \cup\{0\}$. If x or y is 0 , then $x \wedge y=0 \in H \cup\{0\}$. Suppose that $x, y \neq 0$, then $x, y \in H$. If x and y are comparable, then $x \wedge y \in\{x, y\} \subseteq H$.

Now, assume that x, y are incomparable elements of H. In view of the definition of H there exists $\lambda, \lambda^{\prime} \in \Lambda$ such that $x \in S_{\lambda,} y \in S_{\lambda^{\prime}}$. Since $\left\{S_{\lambda} \mid \lambda \in \Lambda\right\}$ is a chain, without lost of generality we can assume $S_{\lambda} \leq S_{\lambda^{\prime}}$. Hence there exists an element $z \in S_{\lambda^{\prime}}$ with $x \leq z$. As x, y are incomparable we must have $z \neq y$. Then $x \wedge y \leq$ $z \wedge y=0$, since $S_{\lambda^{\prime}}$ is an orthogonal system. Hence $x \wedge y=0 \in H \cup\{0\}$.

Thus we obtain $x \wedge y \in H \cup\{0\}$ in each of the possible cases.
$" \Longleftarrow ":$ Conversely, assume that H is a classification tree. Then in view of Proposition 1.2, H is a ρ tolerance preclass.

Now, we construct systems of elements $S_{n}, n=0,1, \ldots$ as follows: $S_{0}=\{1\}$, $S_{1}=\left\{a_{i}^{(1)} \mid i \in I^{(1)}\right\}$ consists of maximal elements of $H \backslash\left\{S_{0}\right\}$ (i.e. of all elements $a_{i}^{(1)}$ which satisfy $a_{i}^{(1)} \prec 1$)
... $S_{n+1}=\left\{a_{i}^{(n+1)} \mid i \in I^{(n+1)}\right\}$ contains all maximal elements of the set
$H \backslash\left(S_{0} \cup S_{1} \cup \ldots \cup S_{n}\right)$.
We prove by induction on n that $S_{0} \geq S_{1} \geq \ldots \geq S_{n}$ is a chain of orthogonal systems.

Let $n=1$. Clearly, $S_{0}=\{1\}$ is an orthogonal system. As the elements of S_{1} are maximal in $H \backslash\left\{S_{0}\right\}$ they must be incomparable. Since H is a ρ tolerance preclass, for all $a_{i}, a_{j} \in S_{1}, i \neq j$ we get $a_{i} \wedge a_{j}=0$. Hence S_{1} is an orthogonal system. Clearly, $S_{0}=\{1\} \geq S_{1}$.

Now, assume that our hypothesis holds for $n=k$, and let us prove that it holds for $n=k+1$ too.

First, we observe that the set $H \backslash\left(S_{0} \cup S_{1} \cup \ldots \cup S_{k}\right)$ is also a ρ tolerance preclass and $S_{k+1} \subseteq H \backslash\left(S_{0} \cup S_{1} \cup \ldots \cup S_{k-1}\right)$. Since S_{k} contains maximal elements of $H \backslash\left(S_{0} \cup S_{1} \cup \ldots \cup S_{k-1}\right)$, for any $a_{i}^{(k+1)} \in S_{k+1}$ there exists an $a_{l}^{(k)} \in S_{k}$ such that $a_{i}^{(k+1)}<a_{l}^{(k)}$.

Now, take any elements $a_{i}^{(k+1)} a_{j}^{(k+1)} \in S_{k+1}, i \neq j$. Then there exists two cases:

- there exists an element $a_{l}^{(k)} \in S_{k}$ such that $a_{i}^{(k+1)}, a_{j}^{(k+1)}<a_{l}^{(k)}$. As $a_{i}^{(k+1)}, a_{j}^{(k+1)}$
are incomparable and $\left(a_{i}^{(k+1)}, a_{j}^{(k+1)}\right) \in \rho$, we obtain $a_{i}^{(k+1)} \wedge a_{j}^{(k+1)}=0$, proving that the elements are orthogonal.
- if $a_{i}^{(k+1)}, a_{j}^{(k+1)}$ has no common upperbound in S_{k}, by construction there exists
$a_{m}^{(k)}, a_{p}^{(k)} \in S_{k}, m \neq p, m, p \in I^{(k)}$ such that $a_{i}^{(k+1)}<a_{m}^{(k)}$ and $a_{j}^{(k+1)}<a_{p}^{(k)}$. As by induction hypothesis $a_{m}^{(k)} \wedge a_{p}^{(k)}=0$ we get $a_{i}^{(k+1)} \wedge a_{j}^{(k+1)} \leq a_{m}^{(k)} \wedge a_{p}^{(k)}=0$ and this implies that $S_{k+1}=\left\{a_{i}^{(k+1)} \mid i \in I^{(k+1)}\right\}$ is an orthogonal system.

Observe, that in both of above cases $S_{k} \geq S_{k+1}$. Hence $S_{0} \geq S_{1} \geq \ldots \geq S_{k} \geq$ S_{k+1} is a chain. Thus we proved by induction that $S_{0} \geq S_{1} \geq \ldots \geq S_{k} \geq S_{k+1} \geq \ldots$ is a chain of orthogonal systems.

Observe that this chain of systems of orthogonal elements also contains at least one decreasing chain of elements: $1>a_{i_{1}}^{(1)}>a_{i_{2}}^{(2)}>\ldots>a_{i_{k+1}}^{(k+1)}>\ldots$

As in H the length of any chain is less or equal then l, the construction process ends in at most l-steps, let say in $q \leq l, q \in \mathbb{N}$ steps.

Then $H^{*}=H \backslash\left(S_{0} \cup S_{1} \cup \ldots \cup S_{q}\right)=\varnothing$, otherwise H^{*} has maximal elements and we can continue the process. Therefore, we obtain $H={ }_{n=0}^{q} S_{n}$.

REFERENCES

[1] Czédli, G., Hálóelmélet, Szeged, 1996
[2] Ganter, B., Wille, R., Formal Concept Analysis, Mathematical Foudations. Springer Verlag, Berlin Heidelberg New York (1999)
[3] Körei, A. and Radeleczki, S., Box elements in a concept lattice, Contribution to ICFCA 2006, Editors Bernhard Ganter, Leonard Kwuida, Verlag Allgemeine Wissenschaft, Drezda 2006 February 12-17, p. 41-55
[4] Radeleczki, S., Classification systems and their lattice, Discussiones Mathematicae, General Algebra and Applications 22 (2002), p. 167-181
[5] Radeleczki, S., Tóth T., Fogalomhálók alkalmazása a csoporttechnológiában, Osztályozó rendszerek matematikai alapjainak összehasonlító vizsgálata, 2. Kutat ási jelentés Miskolc, 2001 március
[6] Ju.A. Srejder, Egyenlőség, hasonlóság, rendezés, Gondolat (1975), Budapest
[7] Vereş, Laura, Classification trees and orthogonal systems,International Scientific Conference microCAD2007, Miskolc, 2007, Vol G, p. 63-68

University of Miskolc
Institute of Mathematics
Miskolc-EGyetemváros
3515 HUNGARY
E-mail address: lauracicu@yahoo.com

[^0]: Received: 5.06.2007. In revised form: 23.11.2007.
 2000 Mathematics Subject Classification. 06A06, 06A23, 06B05, 06B15, 06B99.
 Key words and phrases. Classification trees, tolerance classes, context, concept lattices, DedekindMacNeille completion, orthogonal systems.

