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The convergence of some clustering techniques for
elements ideally grouped in clusters

DANA AVRAM LUPŞA

ABSTRACT. Depending on the characteristics of the clusters we want to determine, different clus-
tering techniques are employed. Data characterization is usually not perfect, the model suffers and the
clustering results are not always what the user expected. This paper argues that, for elements ideally
grouped in clusters, clustering techniques converges. We propose a characterization of elements ide-
ally grouped in clusters and prove the uniqueness of the optimum clusters for some different clustering
criteria.

1. INTRODUCTION

Unsupervised classification, or clustering, is a method that infers groups based
on inter-object similarity. It tends to be an unsupervised learning technique.

A vast collection of clustering algorithms is available [2, 4]. Depending on the
characteristics of the groups we want to determine, different clustering techniques
are employed. Usually, different clustering techniques rely on different data char-
acterization. The multitude of existing clustering techniques as well as the much
discussed problem of ideal clusters are indicators of the fact that data characteri-
zation is not perfect. The model suffers and the clustering results are not always
what the user expected.

When clustering, we can choose to permit (or not to permit) for an object to be
member of two clusters. This choice determines the existence of two classes of clus-
tering methods. Soft clustering methods determine the degree of membership of
each object in each cluster. Hard clustering algorithms assign each object to exactly
one cluster. In this paper, we limit our discussion to hard clustering problem.

This paper argues that, in case of elements ideally grouped in clusters, some
clustering algorithms obtain the ideal clusters. That is, the algorithms converge to
the same solution.

This paper is organized as follows: Section 2 presents the fundamental problem
of clustering. Section 3 describes two traditional clustering techniques. Section
4 defines the notion of elements ideally grouped in clusters. The properties of
clustering in case of elements ideally grouped in clusters are presented in Sections
5 and 6. This paper ends with some conclusions.

2. THE PROBLEM

Unsupervised classification algorithms partition a set of objects in groups. The
fundamental problem of clustering [3, 6] can be stated as follows:
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Given:

• X = {x1, x2, . . . , xm} - a set of elements
• simi : X × X → �+ - a similarity function between elements
• k , 1 ≤ k ≤ m - a pre-determined number of the clusters

Results: classes of elements C1, C2, . . . , Ck with the next properties:

• C1, C2, . . . , Ck ∈ Part(X ) (form a partition of X ), that is:
Ci ∩ Cj = φ, ∀i �= j
k⋃

i=1

Ci = X
• the elements from the same class to be as much similar as possible (function

simi), and the objects from different classes to be as dissimilar as possible.

3. CLUSTERING TECHNIQUES

Traditionally, clustering techniques are broadly divided in hierarchical and par-
titional.

3.1. Hierarchical clustering. Hierarchical clustering builds a cluster hierarchy or,
in other words, a tree of clusters. Hierarchical clustering methods are categorized
into agglomerative and divisive. An agglomerative clustering starts with one point
clusters and recursively merges two or more most appropriate clusters. A divisive
clustering starts with one cluster of all data points and recursively splits the most
appropriate cluster. The process continues until a stopping criterion is achieved.
To merge or split subsets of elements, the similarity between individual elements
has to be generalized to the similarity between subsets.

In this paper we are going to study an agglomerative clustering, with the stop-
ping criterion constructed on the request that a fixed number of clusters must be
achieved. Single link will be considered as the inter-cluster similarity measure.

3.2. Partitional clustering. Partitional algorithm divide data into several subsets.
Elements are iteratively re-assigned to clusters and clusters are gradually im-
proved.

One approach to data partitioning is to start with the definition of objective
function depending on a partition. It is considered that to compute inter- and
intra- cluster similarity measure, based on elements pair-wise similarities, would
be too expensive. Such methods use cluster representatives to compute the objec-
tive function. Using unique cluster representatives make the objective function to
become linear. Depending on how representatives are constructed, the partitional
algorithms are subdivided into K-means and K-medoids methods. In K-mean,
a cluster is represented by its centroid, which is a mean of elements (viewed as
points) within a cluster. K-medoids use the most appropriate element within a
cluster to represent it.

In this paper we study properties of some objective functions used in case of
K-medoids methods.
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4. ELEMENTS IDEALLY GROUPED IN CLUSTERS

To establish some clusters means to approximate the similarities among the el-
ements from the same cluster with the same value. In an ideal case, we don’t
have to do those approximations; the similarities among elements in a cluster have
the same values. Based on this observation, the definitions for elements ideally
grouped in clusters is built [1].

Definition 4.1. Consider X a set with m elements and simi : X × X → �+ a simi-
larity function between elements.
The elements of the set X are ideally grouped according with the similarity func-
tion simi, into the set of ideal clusters {C1, C2, . . . Ck} if:

(1) ∃α so that ∀x, y ∈ Ci : simi(x, y) = α, ∀i ∈ {1, 2, . . . k}
(the similarity between any two elements from a cluster has the value α);

(2) ∃β < α so that ∀x ∈ Ci, y ∈ Cj , i �= j : simi(x, y) = β, ∀i, j ∈ {1, 2, . . . k}
(the similarity between any two elements that are not in the same cluster
has the same value, smaller than α).

The Definition 4.1 of the elements ideally grouped in clusters guarantees that the
similarities between any two elements from the same cluster are equal, but they
are greater than the similarities between elements from different clusters. In the
conditions of Definition 4.1 we say that elements are ideally grouped in clusters,
and that {C1, C2, . . . Ck} are ideal clusters.

5. PROPERTIES OF HIERARCHICAL CLUSTERING WHEN ELEMENTS ARE IDEALLY
GROUPED IN CLUSTERS

5.1. The Algorithm. We built our discussion on a version based on the agglom-
erative hierarchical clustering algorithm presented in [5], which build hierarchical
clusters until a stop condition is met, and which stores all the levels of clusters.
The algorithm is presented in Table 1.

The stop condition can be |C<step>| = 1, when we want to build all levels of
clusters, or |C<step>| = k, when we know that we need k clusters, and k ≥ 2.

The similarity Sim(Cu, Cv) can be a function depending on the similarity be-
tween elements in the clusters Cu and Cv. We will consider the single-link similar-
ity:

SimSL(Cu, Cv) = max
xi∈Cu,yj∈Cv

simi(xi, yj) (5.1)

In what follows, we are going to prove that, if we have objects ideal grouped
in the ideal clusters C1, C2, . . . Ck, the agglomerative hierarchical clustering algo-
rithm, with the stop condition : the number of the cluster on the last level is k, will
obtain the ideal clusters, when the similarity function between clusters is SL.

5.2. When Elements Are Ideally Grouped in Clusters. The algorithm (see Ta-
ble 1) obtains the ideal clusters when the elements are ideally grouped in clusters.
This is stated by Proposition 5.1.

Proposition 5.1. If elements are ideally grouped in clusters C1, C2, . . . Ck, according with
the similarity function between elements simi : X → X , the agglomerative hierarchical
clustering algorithm (see Table 1), with:
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Input
The set X = {x1, x2, . . . , xm} of m objects to be clustered,
the similarity function Sim : P(X ) × P(X ) → �.

Output
The set of hierarchical clusters C = {C0

1 , C0
2 , . . . , C<step>

j }
BEGIN

FOR i = 1 TO m DO C0
i ← {xi} ENDFOR

step = 0
C =

{
C0

1 , C0
2 , . . . , C0

m

}
(A) ————–

WHILE not stopcondition(C) DO
(B) ————–

(C<step>
u∗ , C<step>

v∗ ) = argmax
C

<step>
u ,C

<step>
v

Sim(C<step>
u , C<step>

v ), u <> v

C<step>
∗ = C<step>

u∗ ∪ C<step>
v∗

C<step>+1 = C<step> − {C<step>
u∗ , C<step>

v∗ } ∪ C<step>
∗

C = C ∪ C<step>+1

step = step + 1
(C) ————–

ENDWHILE
(D) ————–
END

TABLE 1. Hierarchical agglomerative clustering algorithm

• stop condition : the number of clusters on the current level is k,
• similarity function between clusters: Sim = SimSL (equation 5.1)

will obtain, on the last level, the ideal clusters C1, C2, . . . Ck.

Proof.
• From Definition 4.1: simi(ei, ej) ≤ α,∀ei ∈ X , ej ∈ X (5.1.1)
• If, at a certain moment, there are more than k clusters on the level < step > , and k is the number of

ideal clusters⇒ there are at least two clusters Cu, Cv which have elements from the same ideal cluster
Cl. That is: ∃ Cl - ideal cluster, eu ∈ C<step>

u and ev ∈ C<step>
v so that eu ∈ Cl and ev ∈ Cl ⇒

simi(eu, ev) = α.
By using (5.1.1)⇒ SimSL(Cu, Cv) = α . (5.1.2)

• At every step, at point B in the algorithm, stopcondition(C) is not fulfilled. That means that there are
more than k clusters on the level < step > at point B. (5.1.3)

• From (5.1.2) and (5.1.3) ⇒ at each step, in point B, there are at least two clusters Cu , Cv so that
SimSL(Cu, Cv) = α. Then the similarity SimSL between clusters that are unified is α. (5.1.4)

• We are going to prove that ∀C<step>
r , ∃ ideal cluster Cl so that C<step>

r ⊆ Cl, in each cut point: (A),
(B), (C) and (D). We prove that the condition is true in point (A) and then we prove that the condition
holds for all the possible paths between (A), (B), (C) and (D). (5.1.5)
At point (A) in the algorithm

– C0
i = {ei} ⇒ ∀C0

i ∃Cl - ideal cluster so that C0
i ⊆ Cl

The path: (A)→ (B)
no variable value changes: condition true in point A⇒ true in B

The path: (B)→ (C)
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suppose condition true in point (B)
(because, if we get here, we come from a cut point where condition is true)
∀C<step>

i ∃Cl - ideal cluster so that: C<step>
i ⊆ Cl (5.1.5.1)

– C<step>
u∗ and C<step>

v∗ are two clusters (at point B)
From (5.1.5.1)⇒ ∃ Clu and Clv - ideal clusters so that:
C<step>

u∗ ⊆ Clu and C<step>
v∗ ⊆ Clv (5.1.5.2)

– cluster changes consist on unification of C<step>
u∗ and C<step>

v∗ ;
from (5.1.4): SimSL(C<step>

u∗ , C<step>
v∗ ) = α

⇒ ∃xi ∈ C<step>
u∗ and ∃xj ∈ C<step>

v∗ so that: simi(xi, xj) = α,
(from Definition 4.1)⇒∃Cl∗ - ideal cluster so that: xi, xj ∈ Cl∗ (5.1.5.3)

– From (5.1.5.2), (5.1.5.3),
⇒ xi ∈ C<step>

u∗ ⊆ Clu and xi ∈ Cl∗⇒ xi ∈ Cl∗ ∩ Clu

⇒ Cl∗ ∩Clu �= φ , where Cl∗ , Clu - ideal clusters⇒ Cl∗ = Clu

⇒ C<step>
u∗ ⊆ Cl∗ (5.1.5.4)

– From (5.1.5.2), (5.1.5.3) results, in a similar manner, that C<step>
v∗ ⊆ Cl∗ (5.1.5.5)

– From (5.1.5.4), (5.1.5.5)⇒ C<step>
u∗ ∪C<step>

v∗ ⊆ Cl∗
The path: (C)→ (B)

no variable value changes: condition true in point C⇒ true in B
The path: (C)→ (D)

no variable value changes: condition true in point C⇒ true in D
The path: (A)→ (D)

no variable value changes: condition true in point A⇒ true in D
• From (5.1.5): ∀CD

r ∃Cl ideal cluster so that: C<step>
r ⊆ Cl (5.1.6)

• Each level of clusters is also a partition of the given set X .
The last level of clusters is get at point D. Because we can get in point D only if stopcondition is true,
the number of clusters at last level is k. Let us note them: CD

1 , CD
2 , . . . CD

k
On the other hand, the ideal clusters are also k and form a partition. (5.1.7)

• From (5.1.6), (5.1.7)
⇒ {CD

1 , CD
2 , ...,CD

k } = {C1, C2, ...,Ck}.
�

6. PROPERTIES OF PARTITIONAL CLUSTERING WHEN ELEMENTS ARE IDEALLY
GROUPED IN CLUSTERS

Some classes of partitional algorithms divide data into subsets that optimize
objective functions (or criterion function) [7]. It is considered that those func-
tions fully characterize the clusters needed for some specific problems. Algorithms
based on criterion functions build clusters that reach the optimum (maximum or
minimum) of the criterion function.

The Definition 4.1 introduces some restrictions on pair-wise similarity among
elements. We study some criterion functions that can be fully described by similar-
ities between elements. We suppose that the similarities between elements satisfy
the conditions from Definition 4.1. We also suppose that we know that we want
to obtain k clusters. We are going to study if there is a relation between the clus-
ters for which the optimum of criterion function is reached and the ideal clusters.
We prove that the optimum is achieved only for the k ideal clusters for the two
criterion functions that are studied.

6.1. Property of I1 Criterion. I1 criterion function maximizes the sum of the aver-
age pairwise similarities between the elements assigned to each cluster, weighted
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according to the size of each cluster. I1 function must be maximized and its for-
mula is:

I1 =
k∑

r=1

1
nr

⎛
⎝ ∑

xi,xj∈Sr

simi(xi, xj)

⎞
⎠ (6.2)

Note that this equation includes the pairwise similarities involving the same
pairs of elements, as it is given in [7].

Proposition 6.1. When elements are ideally grouped in k clusters, the maximum of I1

criterion function (equation 6.2) is reached when and only when elements are grouped in
the ideal clusters.

Proof.
• In the following, for a cluster Cr , we denote by nr the number of elements in Cr : nr = card(Cr).

Then:
k∑

r=1

nr =
k∑

r=1

card(Cr) = m

• Let us consider that the ideal k clusters are C1, C2, ...,Ck and the set of clusters that maximizes the for-
mula 6.2 are S1, S2, ..., Sk . We will show that the partition S1, S2, ..., Sk is the same with the partition
C1, C2, ...,Ck .

• We compute a maximum for I1 criteria, in conditions of Definition 4.1. From the definition, we use the
inequality: simi(xi, xj) ≤ α, ∀xi, xj ∈ X

I1 =
k∑

r=1

1

nr

⎛
⎝ ∑

xi,xj∈Sr

simi(xi, xj)

⎞
⎠

≤
k∑

r=1

1

nr

⎛
⎝ ∑

xi,xj∈Sr

α

⎞
⎠ =

k∑
r=1

1

nr

(
n2

r × α
)

= α×
k∑

r=1

nr = α×m

• We prove that the maximum of I1 is reached when clusters S1, S2, . . . , Sk are the ideal clusters
C1, C2, . . . , Ck .
The similarity among elements from an ideal cluster is α
⇒∑

xi,xj∈Cr
simi(xi, xj) =

∑
xi,xj∈Cr

α

I1 =
k∑

r=1

1

nr

⎛
⎝ ∑

xi,xj∈Sr

simi(xi, xj)

⎞
⎠

=
k∑

r=1

1

nr

⎛
⎝ ∑

xi,xj∈Cr

α

⎞
⎠ = α×m

• We prove that, if the maximum is reached in case of a set of k clusters, then those clusters are the ideal
clusters.
Suppose that there are a set of k clusters, S1, S2, ..., Sk , different than C1, C2, ...,Ck and with the
property that I1 is maximum: I1 = α×m.

– From the condition that I1 reaches maximum, we have that:
simi(xi, xj) = α, ∀xi, xj ∈ Sr

From Definition 4.1⇒ ∃Cl ∀xi, xj ∈ Sr so that xi, xj ∈ Cl

⇒ ∀Sr ∃Cl so that Sr ⊆ Cl (6.1.1)
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– On the other hand, S1, S2, ..., Sk and C1, C2, ..., Ck are clusters (partitions of X , formed by k
subsets of X ) (6.1.2)

– From (6.1.1) and (6.1.2)
⇒ the partition S1, S2, ..., Sk is the same with the partition C1, C2, ...,Ck .

�

6.2. Property of I2 Criterion. I2 criterion function is used by the popular vector-
space variant of the K-means algorithm. In this algorithm each cluster is repre-
sented by its centroid (centrr) and the goal is to find the clustering solution that
maximizes the similarity between each element and the centroid of the cluster that
is assigned to. I2 function must be maximized and its formula is:

I2 =
k∑

r=1

∑
xi∈Sr

simi(xi, centrr) (6.3)

I2 criterion is specific to K-means algorithm. It uses a computed centroid of
each cluster. Such a task is used in cases when each element is a vector of attribute
values, that is, each element can be seen as a point in a multidimensional space. In
order to avoid this, we look at the centroid in a K-medoid manner and consider as
centroid of a cluster the most representative element from that cluster. In this case,
simi(xi, centrr) is the similarity between an ordinary element xi of the cluster and
the most representative element of the cluster which is centrr. In the ideal case, we
consider that the centroid of a cluster can be any element of the cluster.

Note that this equation includes the self-similarities between centroid of each
cluster, as it is defined in [7].

Proposition 6.2. When elements are ideally grouped in k clusters, the maximum of I2

criterion function (equation 6.3), in a K-medoid method of determining the centroid centrr

of a cluster, is reached when and only when elements are grouped in the ideal clusters.

Proof.
• We know that: centrr ∈ Sr ⊆ X ⇒ centrr ∈ X
• We compute a maximum for I2 criteria, in conditions of Definition 4.1. From the definition, we use the

inequality: simi(xi, xj) ≤ α, ∀xi, xj ∈ X

I2 =
k∑

r=1

∑
xi∈Sr

simi(xi, centrr)

≤
k∑

r=1

∑
xi∈Sr

α =
k∑

r=1

nr × α = α×
k∑

r=1

nr

= α×m

• We prove that the maximum of I2 is reached when clusters S1, S2, . . . , Sk are the ideal clusters
C1, C2, . . . , Ck .
The similarity between elements from an ideal cluster is α. For any representative of the cluster centrr ,
which is an element of the cluster Cr , the next relation holds: simi(xi, centrr) = α, ∀xi ∈ Cr . That
implies:

I2 =
k∑

r=1

∑
xi∈Cr

simi(xi, centrr)

=

k∑
r=1

∑
xi∈Cr

α =

k∑
r=1

nr × α = α×m
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• We prove that, if the maximum is reached in case of a set of k clusters, then those clusters are the ideal
clusters.
Suppose that there are a set of k clusters, S1, S2, ..., Sk , different than C1, C2, ...,Ck and with the
property that I2 is maximum: I2 = m× α.

– From the condition that I2 is maximum, we have that:
simi(xi, centrr) = α, ∀xi ∈ Sr

From Definition 4.1, the similarity between two elements is α only if they are in the same ideal
cluster: ∀xi ∈ Sr ∃Cil - ideal cluster so that: : (xi ∈ Cil and centrr ∈ Cil)
⇒ centrr ∈ Cil , ∀xi ∈ Sr ⇒∀Cil ∃Cl - ideal cluster so that: Cl = Cil

⇒ ∃Cl so that (∀xi ∈ Sr : xi ∈ Cl) and centrr ∈ Cl

⇒ ∃Cl so that Sr ⊆ Cl (6.2.1)
– On the other hand, S1, S2, ..., Sk and C1, C2, ...,Ck are clusters (partitions of X , containing k

subsets of X ). (6.2.2)
– From (6.2.1) and (6.2.2)
⇒ the partition S1, S2, ..., Sk is the same with the partition C1, C2, ...,Ck

�

7. CONCLUSIONS

In this paper we have studied the properties of some clustering techniques in
case of elements ideally grouped in clusters. We have proved that some clustering
techniques converges in case of elements ideally grouped in clusters, in the sense
that they all obtains the ideal clusters. We have proved that the agglomerative hi-
erarchical clustering algorithm obtains the ideal clusters when elements are ideally
grouped in clusters. We have also studied clustering techniques that are based on
criterion functions and that obtain the clusters that maximizes that criterion. We
have proved that the criterion functions I1 and I2 reach their optimum when and
only when the elements are grouped in the ideal clusters, in case when elements
are ideally grouped in clusters.
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