CREATIVE MATH. \& INF.
17 (2008), 106-109

The shape of Earth-type planets

István Huba Atilla Sass

ABSTRACT. This paper deals with the application of the equation of the surface of a rotating massive body for the surface of the Earth-type planets. A contradiction with the present situation appears, but having a geological explanation.

1. THE SPACE-TIME METRICS IN THE NEIGHBOURHOOD OF A ROTATING MASSIVE BODY

It is easy to show [1] that in the geometrized spherical coordinates

$$
\begin{gather*}
x^{0}=t=c t_{p h} ; \quad x^{1}=r=r_{p h} ; \quad x^{2}=\theta=\theta_{p h} ; \quad x^{3}=\varphi=\varphi_{p h} \tag{1}\\
c=2,99792458 \cdot 10^{8} \frac{m}{s}=\text { speed of Light; [2] and [3] } \\
\varphi=\left\{\begin{array}{l}
\phi+\omega t, \text { with } \frac{d \varphi}{d t}=\omega \text { (inside the body) } \\
\phi, \quad \text { with } \frac{d \varphi}{d t}=0 \quad \text { (outside the body), }
\end{array}\right. \tag{2}
\end{gather*}
$$

the space-time metrics, in the neighbourhood of a body in stationary rotation, is

$$
\begin{equation*}
d s^{2}=g_{00}\left(d x^{0}\right)^{2}+g_{11}\left(d x^{1}\right)^{2}+g_{22}\left(d x^{2}\right)^{2}+g_{33}\left(d x^{3}\right)^{2}+2 g_{03} d x^{0} d x^{\prime} \tag{3}
\end{equation*}
$$

where

$$
g_{i j}=g_{i j}\left(x^{1}, x^{2}\right)
$$

The index "ph" shows the fact that the respective magnitude is measured in physical units, as if measured by a remote observer.

Received: 11.10.2007. In revised form: 2.11.2007.
2000 Mathematics Subject Classification. 83C20.
Key words and phrases. Space-time metrics.

We define the quadrivelocity

$$
\begin{equation*}
\mathbf{u}\left(u^{0}, u^{1}, u^{2}, u^{3}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{i}=\frac{d x^{i}}{d s} \tag{5}
\end{equation*}
$$

In our case

$$
\begin{equation*}
u^{0}=\left(g_{00}+2 \omega g_{03}+\omega^{2} g_{33}\right)^{-\frac{1}{2}} ; \quad u^{1}=u^{2}=0 ; \quad u^{3}=\omega u^{0} \tag{6}
\end{equation*}
$$

where ω represents the angular speed of the central body, compared to the fixed reference frame round the axis $C z$.

When the central body is rotating, the space-time in its exterior is characterized by Kerr's metrics [2]

$$
\begin{equation*}
d s^{2}=\frac{\Delta}{\sum}\left(d t+a \sin ^{2} \theta d \phi\right)^{2}-\frac{\sin ^{2} \theta}{\sum}\left[\left(r^{2}+a^{2}\right) d \phi-a d t\right]^{2}-\frac{\sum}{\Delta} d r^{2}-\sum d \theta^{2} \tag{7}
\end{equation*}
$$

where the following notations have been employed

$$
\begin{equation*}
\Delta=r^{2}-2 m p+a^{2} ; \quad \sum=r^{2}+a^{2} \cos ^{2} \theta . \tag{8}
\end{equation*}
$$

Knowing that the universal gravitational constant [3]

$$
\begin{equation*}
G=6.6732 \cdot 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}} \tag{9}
\end{equation*}
$$

the relations between the geometrized magnitudes and the physical ones are

length	$l=l_{p h}$	(m)
time	$t=c t_{p h}$	(m)
mass	$m=\frac{G}{c^{2}} M_{p h}$	(m)
angular momentum	$J=\frac{G}{c^{3}} J_{p h}$	(m)
specific angular momentum	$a=\frac{a_{p h}}{c^{2}}=\frac{J}{m}$	(m)
angular speed	$\omega=\frac{\omega_{p h}}{c}$	$\left(m^{-1}\right)$

2. THE SURFACE-EQUATION OF A ROTATING MASSIVE BODY

If we note by

$$
\begin{equation*}
\varepsilon=\rho c^{2} \tag{11}
\end{equation*}
$$

the density of energy and by P the pressure inside the rotating central body then the equation of the hydrostatic equilibrium is under the form

$$
\begin{equation*}
\frac{d P}{\varepsilon+P}=d \ln u^{0} \tag{12}
\end{equation*}
$$

We define the surface of the body the place where the pressure and the density become null, where

$$
\begin{equation*}
u^{0}=u_{s}^{0}=\text { constant } \tag{13}
\end{equation*}
$$

For a non-rotating body, $\omega=0, a=0$, from

$$
\begin{equation*}
u_{s}^{0}=\left(1-\frac{2 m}{R}\right)^{-\frac{1}{2}}=\mathrm{constant} \tag{14}
\end{equation*}
$$

it results $R=$ constant, namely the body is spherical.
For a stationary rotation the equation of the intersection between the surface of the rigid body and a plan containing axis $O z$ is

$$
\begin{equation*}
u_{s}^{0}=\left[\left(1-\frac{2 m r}{\sum}\right)-\frac{2 \omega}{\sum} \cdot 2 m a r \sin ^{2} \theta-\omega^{2}\left(r^{2}+a^{2} \frac{2 m a^{2} r \sin \theta}{\sum}\right) \sin ^{2} \theta\right]^{-\frac{1}{2}} . \tag{15}
\end{equation*}
$$

At the poles where $\theta=0$ or $\theta=\pi$ we get

$$
\begin{equation*}
u_{s}^{0}=\left(1-\frac{2 m r_{p}}{r_{p}^{2}+a^{2}}\right)^{-\frac{1}{2}} \tag{16}
\end{equation*}
$$

and at the equator where $\theta=\frac{\pi}{2}$, we get

$$
\begin{equation*}
u_{s}^{0}=\left[\left(1-\frac{2 m}{r_{e}}\right)-2 \omega a \frac{2 m}{r_{e}}-\omega^{2}\left(r_{e}^{2}+a^{2}+a^{2} \frac{2 m}{r_{e}}\right)\right]^{-\frac{1}{2}} . \tag{17}
\end{equation*}
$$

Equalizing u_{s}^{0} from (15) to the one from (16) we get for the surface of the body the equation:

$$
\begin{equation*}
\frac{2 m r}{\sum}+2 \omega \frac{2 a r}{\sum} \sin ^{2} \theta+\omega^{2}\left(r^{2}+a^{2}+\frac{2 m a^{2} r \sin \theta}{\sum}\right) \sin ^{2} \theta=\frac{2 m r_{p}}{r_{p}^{2}+a^{2}} \tag{18}
\end{equation*}
$$

In order to able to study the shape of the curve (18) we express the generalized magnitudes compared to the polar radius r_{p} of the body introducing the notations:

$$
\begin{equation*}
w=\frac{r}{r_{p}} ; \quad \beta=\frac{r_{e}}{r_{p}} ; \quad \gamma=\omega r_{p} ; \quad \mu=\frac{2 m}{r_{p}} ; \quad \sigma=\frac{a}{r_{p}} \tag{19}
\end{equation*}
$$

Equation (18) becomes

$$
\begin{equation*}
\frac{\mu w+2 \gamma \mu \sigma w \sin ^{2} \theta}{w^{2}+\sigma^{2} \cos ^{2} \theta}+\gamma^{2}\left(w^{2}+\sigma^{2}+\frac{\mu \sigma^{2} w \sin ^{2} \theta}{w^{2}+\sigma^{2} \cos ^{2} \theta}\right) \sin ^{2} \theta=\frac{\mu}{1+\sigma^{2}} \tag{20}
\end{equation*}
$$

In the case of the Earth:

$$
\begin{equation*}
\gamma=1.546 \cdot 10^{-6} ; \quad \sigma=5.142 \cdot 10^{-6} ; \quad \sigma^{2}=2.64 \cdot 10^{-11} ; \quad \mu=1.880 \cdot 10^{-9} \tag{21}
\end{equation*}
$$

σ^{2} and $\gamma \sigma$ being very little as compared to w^{2} can be neglected and from (20) results

$$
\begin{equation*}
\frac{w^{3} \sin ^{2} \theta}{w-1}=\frac{\mu}{\gamma^{2}}=k \tag{22}
\end{equation*}
$$

The equation (22) is the shape-equation for Earth and for the Earth-type planets. In physical values:

$$
\begin{equation*}
k=\frac{\mu}{\gamma^{2}}=\frac{G}{2 \pi^{2}} \cdot \frac{M_{p h} T^{2}}{r_{p}^{3}} \tag{23}
\end{equation*}
$$

$T=$ planets sidereal day (rotational period).
In case of Earth [2], [4] $M_{p h}=5.9736 \cdot 10^{24} \mathrm{~kg} ; T=23^{h} 56^{m} 04^{s} \cdot 1=86164.1 \mathrm{~s}$; $r_{p}=6.3568 \cdot 10^{6} m, \quad r_{e}=6.3781 \cdot 10^{6} \mathrm{~m}$.

For the equator $\theta=\frac{\pi}{2}, w=\beta$.

$$
k=\frac{\beta^{3}}{\beta-1} \quad \text { and } \quad T^{2}=\frac{2 \pi^{2}}{G} \cdot k \cdot \frac{r_{p}^{3}}{M_{p h}}
$$

In the Earth case $\beta=1.003351$ and $k=301.4513341$ corresponds to the calculated value $T=61922.2 \mathrm{~s}$

Taking into account that, as it results from the present measurements, each day diminishes with approximately 0.001 seconds per century, it results that our calculated period matches the one about $2.4 \cdot 10^{9}$ years ago when the terrestrial crust coagulated. For the planet Mars

$$
r_{e}=3.397 \cdot 10^{6} m ; \quad r_{p}=3.375 \cdot 10^{6} m ; \quad \beta=1.006518 ; \quad k=156.4287
$$

References

[1] Sass, I.H.A., Late stages in stellar evolution, Monographical booklets in applied \& computer mathematics, MN-24/Pamm, Budapest University of Technology and Economics, Budapest, 2002
[2] Lang, K.R., Astrophysical formulae, Springer-Verlag Berlin, Heidelberg New York, Vol. 2, 1974
[3] Allen, C.W., Astrophysical quantities, University of London, The Athlone Press 1973
[4] http:// nssdc.gsfc.nasa.gov/planetary/factsheet/index.html

University of Baia Mare

Department of Mathematics
Victoriei 76, 430122 Baia Mare
Romania
E-mail address: huba.sass@rdslink.ro

