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The shape of Earth-type planets

ISTVÁN HUBA ATILLA SASS

ABSTRACT. This paper deals with the application of the equation of the surface of a rotating massive
body for the surface of the Earth-type planets. A contradiction with the present situation appears, but
having a geological explanation.

1. THE SPACE-TIME METRICS IN THE NEIGHBOURHOOD OF A ROTATING MASSIVE
BODY

It is easy to show [1] that in the geometrized spherical coordinates

x0 = t = ctph; x1 = r = rph; x2 = θ = θph; x3 = ϕ = ϕph (1)

c = 2, 99792458 · 108 m

s
= speed of Light; [2] and [3]

ϕ =

⎧⎪⎨
⎪⎩

φ + ωt, with
dϕ

dt
= ω (inside the body)

φ, with
dϕ

dt
= 0 (outside the body),

(2)

the space-time metrics, in the neighbourhood of a body in stationary rotation, is

ds2 = g00

(
dx0

)2
+ g11

(
dx1

)2
+ g22

(
dx2

)2
+ g33

(
dx3

)2
+ 2g03dx0dx′ (3)

where

gij = gij

(
x1, x2

)
.

The index ”ph” shows the fact that the respective magnitude is measured in
physical units, as if measured by a remote observer.
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We define the quadrivelocity

u(u0, u1, u2, u3) (4)

where

ui =
dxi

ds
(5)

In our case

u0 =
(
g00 + 2ωg03 + ω2g33

)− 1
2 ; u1 = u2 = 0; u3 = ωu0, (6)

where ω represents the angular speed of the central body, compared to the fixed
reference frame round the axis Cz.

When the central body is rotating, the space-time in its exterior is characterized
by Kerr’s metrics [2]

ds2 =
Δ∑ (

dt + a sin2 θdφ
)2 − sin2 θ∑ [(

r2 + a2
)
dφ − a dt

]2 −
∑
Δ

dr2 −
∑

dθ2 (7)

where the following notations have been employed

Δ = r2 − 2mp + a2;
∑

= r2 + a2 cos2 θ. (8)

Knowing that the universal gravitational constant [3]

G = 6.6732 · 10−11 m3

kg s2
(9)

the relations between the geometrized magnitudes and the physical ones are
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length l = lph (m)
time t = ctph (m)

mass m =
G

c2
Mph (m)

angular momentum J =
G

c3
Jph (m)

specific angular momentum a =
aph

c
=

J

m
(m)

angular speed ω =
ωph

c
(m−1)

(10)

2. THE SURFACE-EQUATION OF A ROTATING MASSIVE BODY

If we note by

ε = ρc2 (11)
the density of energy and by P the pressure inside the rotating central body then
the equation of the hydrostatic equilibrium is under the form

dP

ε + P
= d ln u0 (12)

We define the surface of the body the place where the pressure and the density
become null, where

u0 = u0
s= constant (13)

For a non-rotating body, ω = 0, a = 0, from

u0
s =

(
1 − 2m

R

)− 1
2

= constant (14)

it results R=constant, namely the body is spherical.
For a stationary rotation the equation of the intersection between the surface of

the rigid body and a plan containing axis Oz is

u0
s =

[(
1 − 2mr∑

)
− 2ω∑ · 2mar sin2 θ − ω2

(
r2 + a2 2ma2r sin θ∑

)
sin2 θ

]− 1
2

. (15)

At the poles where θ = 0 or θ = π we get

u0
s =

(
1 − 2mrp

r2
p + a2

)− 1
2

(16)

and at the equator where θ =
π

2
, we get

u0
s =

[(
1 − 2m

re

)
− 2ωa

2m

re
− ω2

(
r2
e + a2 + a2 2m

re

)]− 1
2

. (17)

Equalizing u0
s from (15) to the one from (16) we get for the surface of the body the

equation:

2mr∑ + 2ω
2ar∑ sin2 θ + ω2

(
r2 + a2 +

2ma2r sin θ∑
)

sin2 θ =
2mrp

r2
p + a2

(18)
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In order to able to study the shape of the curve (18) we express the generalized
magnitudes compared to the polar radius rp of the body introducing the notations:

w =
r

rp
; β =

re

rp
; γ = ωrp; μ =

2m

rp
; σ =

a

rp
(19)

Equation (18) becomes

μw + 2γμσw sin2 θ

w2 + σ2 cos2 θ
+ γ2

(
w2 + σ2 +

μσ2w sin2 θ

w2 + σ2 cos2 θ

)
sin2 θ =

μ

1 + σ2
(20)

In the case of the Earth:

γ = 1.546 · 10−6; σ = 5.142 · 10−6; σ2 = 2.64 · 10−11; μ = 1.880 · 10−9 (21)

σ2 and γσ being very little as compared to w2 can be neglected and from (20) results

w3 sin2 θ

w − 1
=

μ

γ2
= k (22)

The equation (22) is the shape-equation for Earth and for the Earth-type planets.
In physical values:

k =
μ

γ2
=

G

2π2
· MphT 2

r3
p

(23)

T = planets sidereal day (rotational period).
In case of Earth [2], [4] Mph = 5.9736 · 1024kg; T = 23h56m04s · 1 = 86164.1s;

rp = 6.3568 · 106m, re = 6.3781 · 106m.

For the equator θ =
π

2
, w = β.

k =
β3

β − 1
and T 2 =

2π2

G
· k · r3

p

Mph

In the Earth case β = 1.003351 and k = 301.4513341 corresponds to the calculated
value T = 61922.2s

Taking into account that, as it results from the present measurements, each day
diminishes with approximately 0.001 seconds per century, it results that our cal-
culated period matches the one about 2.4 · 109 years ago when the terrestrial crust
coagulated. For the planet Mars

re = 3.397 · 106m; rp = 3.375 · 106m; β = 1.006518; k = 156.4287
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