
CREATIVE MATH. & INF.
17 (2008), 110 - 114

An evaluation of the multithreading benefits for a
network scan application

OVIDIU COSMA

ABSTRACT. The network scanning applications are useful for building the search engines databases,
and for establishing the security level of a computer network. Such an application usually searches for
services through a sequential detection process. This process can be time consuming because each try
is followed by a waiting interval, in which the answer from the server is expected. The process can
be speeded up by shorting this waiting period, or by reducing the number of retries. Both approaches
affect the reliability of the scanning process. This article evaluates a different approach: speeding up
the search process by multithreading.

1. INTRODUCTION

A network scan application searches for the servers that offer certain services.
Usually the search is performed in a certain list of IP addresses. For this purpose
the scanning application systematically sends connection requests to the IP
addresses in the scan list, on certain port numbers, and then waits a settled amount
of time for the answer from the server. If the answer does not arrive in time, the
application can decide to retry the operation for one or more times.

The present article tries to evaluate the increase in a network scan application
efficiency that can be achieved by multithreading.

If the scanning application examines more IP addresses [1] in parallel, than bet-
ter performances can be obtained, because the waiting periods in which the appli-
cation does not perform useful operations can be avoided.

2. THE SCANNING APPLICATION

The scanning application is based on a thread [2] that sends a certain number of
connection requests to a server application. The IP address and the port number
at which the server waits for the connection requests are supplied by the module
that creates the thread.

The source code of the thread class is presented in Listing 1.
The parameters of the constructor specify the server address, the port number,

the number of connection retries, and three List objects [4] that hold all the checked
IP addresses, the ones that contain active servers and the invalid ones.

The run method describes the operations of the scanning thread. At the begin-
ning, the searched IP address is added to the list of checked addresses. Then fol-
lows a loop in which certain connection requests are performed. In case of success,
the loop is broken and the IP is added to the list of valid addresses. The end of the

Received: 11.09.2007. In revised form: 18.11.2007.
2000 Mathematics Subject Classification. 94A99.
Key words and phrases. Network scan.

110



An evaluation of the multithreading benefits for a network scan application 111

loop is reached in case of failure, and the IP is added to the list of invalid addresses.
A successful connection with the server corresponds to the successful creation of
the Socket object [3], with the appropriate parameters for the constructor. In case of
failure, an IOException is thrown.

The threadNo variable decremented in the end offers a convenient way to de-
tect the end of the scan operation, which corresponds to zero CheckThread threads
active in memory.

Listing 1. The CheckThread class

The main class builds the user interface and launches the network scan by main-
taining the number of threads selected by the user. The scanning threads managing
process is presented in L isting 2. Launching of new threads is stopped when the
total number of threads reaches maxThreads, which is selected by the user, and
restarted when one of them finishes operation. This way, the total number of
threads is maintained most of the time close to the limit imposed by the user.

For stopping the thread creation process the main thread is suspended, and it
will be resumed when the next scanning thread finishes operation.



112 Ovidiu Cosma

The user interface is presented in Figure 1. In the end, after the last thread
finishes operation, the searching time is computed and displayed.

Figure 1. The user interface

3. CONCLUSIONS

The application was tested on computer equipped with an Intel Celeron proces-
sor, and the Windows XP operating system. The next graph presents the scanning
time for 50 and 100 IP addresses. For each address a single port was tested, and
the number of retries was 2. A significant gain in performance could be obtained
by increasing the number of threads from 2 to 15. Beyond this value no significant
benefits could be obtained, so a number of 15 threads are sufficient. By increasing
the number of threads from 2 to 15, the scanning time dropped by approximately
10 times.



An evaluation of the multithreading benefits for a network scan application 113

Listing 2. Managing the scanning threads

Figure 2. Experimental results



114 Ovidiu Cosma

REFERENCES

[1] Andrew, S. Tanenbaum, Computer Networks, Prentice Hall, 1989
[2] Ian, Darwin, Java Cookbook, O’Reilly, 2001 e
[3] Elliotte, Rusty, Harold, Java Network Programming, O’Reilly, 2004
[4] Java Platform, Standard Edition 6, API Specification, http://java.sun.com/javase/6/docs/api/

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

VICTORIEI 76,
430122 BAIA MARE, ROMANIA

E-mail address: o.cosma@rdslink.ro


