
CREATIVE MATH. & INF.
17 (2008), 115 - 126

Impact of modern Web technologies on e-learning
platforms

CEZAR TOADER

ABSTRACT. This paper presents a consistent overview of the evolution of Web 2.0 relevant tech-
nologies in order to sustain the connection with e-learning 2.0 concepts. Relevant changes in Web
application presentation layer are discussed, and the actual trends in Web programming are taken into
account. Web browsers drawbacks and HTML transformation are emphasized, rich clients advantages
are presented, and programming frameworks are discussed. Also, several Web technologies for Web
learning, used at North University of Baia Mare, are presented.

1. INTRODUCTION

Web applications offer a complex functionality to a large number of users. Re-
garding the asynchronous distance learning process, and the quality of presenta-
tions in front of learners, Web applications and Web systems appear suitable for
sustain a complex learning process, distributed in time and space, oriented to a
large number of learners. The performance and reliability of Web-based learning
systems have become very important. The quality of presentations and the use
of modern technologies concern the Web-based learning applications developers.
This paper presents the complex landscape of Web technologies, actual trends and
the connection with e-learning 2.0.

2. WEB 2.0

Most Web 2.0 applications are built upon a conservative list of mature open
technologies. This short list of technologies is often referred as the Web 2.0 stack.
Candidate technologies need to be stable and mature, supported by a very large
majority of browsers on different environments, and also to be mastered by a large
class of Web developers.

2.1. XSLT and XPath. The most ancient of the technologies discussed here is XSLT
(Extensible Stylesheet Language Transformations) and its sister technology XPath
(XML Path Language). Although both technologies were specified in November
1999, they are still waiting to be admitted to the Web 2.0 stack. XSLT and XPath
were very hot topics among Web developers in 1999 and 2000, but their slow sup-
port by Web browsers discouraged developers from using them. Unfortunately,
now that they are correctly supported by the main browsers, developers have been
slow to come back to XSLT.

Received: 26.10.2007. In revised form: 16.11.2007.
2000 Mathematics Subject Classification. 68N99.
Key words and phrases. Web 2.0, e-Learning 2.0, XSLT, SVG, XForms, OpenLaszlo, XUL, XAML,

AJAX..

115

116 Cezar Toader

XSLT and XPath were developed by the W3C XSL Working Group [14]. They are
parts of a series of recommendations collectively known as XSL that also includes
XSL-FO (XSL Formatting Objects), a recommendation that describes an XML vo-
cabulary for specifying formatting semantics. XSL-FO defines how documents must
be formatted and is often used to produce PDF or print layouts.

Note that the acronym XSL (Extensible Stylesheet Language) is also used by the
W3C to designate XSL-FO (XSL Formatting Objects). Many people improperly use
XSL to designate an old version of XSLT supported by IE 5.x and even to designate
XSLT.

2.2. SVG. SVG stands for Scalable Vector Graphics, and its first version was pub-
lished as a W3C recommendation in September 2001 [9]. It was superseded in
January 2003 by SVG 1.1 and the W3C is now working on SVG 1.2.

SVG is an advanced language for two-dimensional drawings with support of
animation. It’s difficult to present SVG without mentioning that it can be seen as
a competitor to both PDF and Flash. SVG 1.0 was a monolithic document, which,
like many other W3C specifications, has been split into the following pieces: SVG
Tiny, SVG Full, SVG Print, SVG XML Binding Language (sXBL).

What makes SVG so interesting? Consider these elements:

• SVG is an open standard;

• SVG is based on XML and can be produced by XML tools such as XSLT;

• SVG is a text-based format. The text in SVG drawings can be copied and
pasted and indexed;

• As a vector graphic format, SVG can be scaled, and this leaves room for
many applications;

• SVG has two levels of built-in support for animations: simple animations
can be described declaratively in XML, and more complex animations can
be written in JavaScript through a well-specified DOM interface that un-
derstands the semantics of SVG drawings.

SVG is natively supported in recent versions of Mozilla/Firefox, Safari, and
Konqueror. Entries on Microsoft blogs indicate that it should be supported by
a later version of Internet Explorer. The situation is not desperate for users of
Internet Explorer and older versions of other browsers, since an SVG plug-in is
available on the Adobe Web site.

Should we use browser-side SVG now? The answer is probably no, except
maybe for mobile applications. Between native implementations still immature,
implementing different subsets of the recommendation, and an Adobe SVG plug-
in no longer in development, the path is narrow.

2.3. XForms. XForms became a W3C recommendation in October 2003. XForms
defines itself as an XML application that represents the next generation of forms for the
Web. However, this definition does not adequately express what can be done with
this specification. XForms can be seen as a language to define user interfaces at
large and can compete with the unofficial collaboration of Web browsers manufac-
turers’ technologies [13].

Impact of modern Web technologies on e-learning platforms 117

No native implementation of XForms currently exists in any major browser, al-
though Mozilla is working on such an implementation (which is already available
as an extension). The native support of XForms in browsers is tempered by the re-
luctance of Microsoft for this standard, as well as by the WHAT WG (Web Hyper-
text Application Technology Working Group), an organization that defines itself as
a loose unofficial collaboration of Web browser manufacturers and interested parties. The
WHAT WG includes people from Mozilla, Opera, and Safari and has published
Web Forms 2.0 (www.whatwg.org/specs/web-forms/current-work), a specifica-
tion more closely to HTML forms and far less ambitious than XForms.

To deploy XForms applications today, you need to rely either on a plug-in (sev-
eral of them have been developed but none of them work on other browsers than
Internet Explorer), on the XForms Firefox extension, on a specific browser such as
X-Smiles, or a client/server implementation.

A large number of pure JavaScript XForms implementations are currently un-
der development. The amount of work to implement XForms shouldn’t be under-
estimated. Important pieces of the XML architecture on which XForms relies are
missing in major browsers. They will most probably represent good alternatives in
the future, but their current versions are still not mature enough to be considered
today as viable alternatives.

Client/server implementations seem the most promising in the short term. A
first generation of XForms Client server implementations were rapidly developed
after the specification was published. The idea was to transform the XForms doc-
uments into HTML and do all the processing server side. A second generation of
XForms client server implementations that takes full advantage of Web 2.0 tech-
nologies started to appear in 2005. These implementations make extensive use of
Ajax.

2.4. HTML. Among the Web 2.0 technologies, the one that has undergone more
changes than any of the other technologies, and which is most likely to change
again is HTML.

HTML was de-facto frozen by the arrival of XML in 1998, and today’s Web is
still based on the set of elements defined in 1999 by HTML 4.01 [5]. This wouldn’t
be a problem if, in the meantime, there hadn’t been an expectation and increasing
pressure to get HTML moving. Back in 1998, the HTML Working Group chairs
expressed their wish to define a new HTML version with new features even if that
broke upward compatibility: “There is no requirement for strict upwards compat-
ibility, although the migration path will be carefully considered. New features and
richer authoring environments will provide compelling reasons for upgrading to
the next generation of HTML.” (http://www.w3.org/MarkUp/future/).

With the success of XML, the HTML Working Group had to postpone this goal
to undertake the more urgent task of turning HTML into an XML vocabulary with
the exact same set of elements as HTML 4.01 and to split the result, XHTML, into
modules so that XHTML subsets can be used in mobile phones and that new mod-
ules can be added. Now that this task is considered accomplished, the Working
Group has resumed working on the next generation of XHTML, called XHTML
2.0.

118 Cezar Toader

In the meantime, Microsoft seems to have lost any interest for HTML. Internet
Explorer 6.0 was published in 2001 and Microsoft has stopped any development
activity on its browser since it resumed working on Internet Explorer 7.0 in 2005.

By contrast, the other Web browsers developers have regained energy, encour-
aged by the good results of Firefox. Impatient with the slow progress of XHTML
2.0 and often disagreeing with the options taken by the W3C Working Group, they
have created an informal consortium, the WHATWG. They propose an alternative
evolution path for HTML.

The situation right now consists of two different visions for the next HTML: on
the one side is the W3C, which seems to have lost the support of browser makers,
and on the other side an informal consortium of browser makers that represents
less than 20 percent of cumulative market share.

Since none of these actors seems able to impose their vision, Microsoft appears
to be in a situation to arbitrate the debate between one of these two visions; alter-
natively, we may continue to see HTML stagnate.

2.5. The W3C Proposals. XForms is the W3C proposal to get rid of HTML forms
limitations. XForms was designed to be usable embedded in other XML vocabular-
ies such as XHTML 1.1, but also as an XHTML 2.0 module and within XHTML 2.0.
XForms is the replacement of the XHTML 1.1 Forms module. In other words, this
means that you cannot use HTML forms any longer with XHTML 2.0 but must use
XForms instead. As XForms is significantly more powerful but also significantly
more complex than HTML forms, this has become one of the major objections to
XHTML 2.0.

The most spectacular changes between XHTML 1.1 and XHTML 2.0 come from
attributes. In XHTML 2.0 any element with a src attribute behaves like an object
and any element with a href attribute is considered as a link.

The option taken by XHTML 2.0 is to add a very limited number of new ele-
ments, such as section and summary and a new type of list, nl for navigation lists.
HTML Working Group have chosen to use a new attribute, role. The XHTML 2.0
role attribute uses Qnames, short for Qualified Name. These names use XML names-
pace prefixes, and are composed like Java class names.

2.6. The WHATWG Proposals. The WHATWG (http://www.whatwg.org) is
actively working on two specifications:

Web Forms 2.0, as an extension to HTML 4.01 forms,
(http://www.whatwg.org/specs/web-forms/current-work);

Web Applications 1.0, known as HTML 5, as their proposal for next HTML,
(http://www.whatwg.org/specs/web-apps/current-work).

Both documents try to leverage the experience gained from the current browser
implementations and maximize upward compatibility. Their basis can be consid-
ered to be common current practices rather than current specifications. A striking
example of this position is that HTML 5 defines its own parsing rules, which are
neither SGML nor XML but look like the detailed specifications of how current
browsers parse HTML documents.

Whereas XForms is completely changing the processing model of interactive
Web applications, Web Forms 2.0 is an update of HTML 4.01 forms.

Impact of modern Web technologies on e-learning platforms 119

2.7. XHTML 2.0 vs. HTML 5. Except for the difference between Web Forms 2.0
and XForms, which are radically different, the differences between XHTML 2.0
and HTML 5 show very different visions of how new features should be added to
future versions.

HTML 5 may be seen as simpler with its new elements ready to use. However,
new requests for new features will keep coming up. These requests will need to
be filtered out to decide which of them should result in creating new elements and
which ones should be rejected. This will inevitably lead to inflation in the number
of HTML 5 elements and to a problem for Web authors of those feature requests
that have been rejected.

With XHTML 2.0, by contrast, if you need a new feature, you create a new role
value in your own namespace. And if you think that this feature is generic enough,
you try to persuade the HTML Working Group to add this value to the set of pre-
defined values.

3. COMPARING SEVERAL RICH CLIENTS

First, we must see that a large number of applications are installed locally but
take advantage of Web-based data stores. Some examples:

• Many anti-virus programs retrieve updated definition files of the latest
viruses and also often update the application itself.

• A growing number of news aggregators rely on multiple RSS feeds to pro-
vide up-to-date information of interest to the user.

• Accountancy packages often have the capability to import bank statements
and account details, usually through a Web service hosted by the bank in
question.

• Internet messaging (IM) clients are used to chat, participate in video confer-
ences, and exchange files. Many also have a sophisticated UI that enables
contact management and related tasks.

However, the rich client needs to overcome the traditional difficulties of data stor-
age and deployment; namely, it must be able to access an up-to-date version of
any data it needs and it must be able to access and install any necessary upgrades,
service packs and bug fixes that are produced by an application’s creators.

This need has led to a range of client types, from those that are still browser-
based but use a design framework to get over the problem of cross-browser de-
velopment, to those that are standalone applications that can utilize data from the
Web as well as auto upgrade. In the middle there are applications that require local
files but take advantage of the browser’s user interface and rendering capabilities.

Below, three open frameworks for creating rich clients will be quickly examined:

• OpenLaszlo, which enables developers to create sophisticated browser-
based user interfaces [8].

• XUL, another browser-based framework that can completely transform the
client application [15].

120 Cezar Toader

• XAML, a language comprising declarative markup and compiled code that
can create desktop applications that can also take advantage of online re-
sources [12].

All three of these frameworks make heavy use of XML and they exhibit varying de-
grees of separation between the traditional browser-based application and a mod-
ern rich client.

3.1. OpenLaszlo. OpenLaszlo is designed to aid development of rich cross-
browser applications using a combination of declarative XML and JavaScript. The
XML and script is read by a Java servlet and transformed into a standard Web
page. The client-side features are provided by either Flash or DHTML, depending
on how the application is configured [8].

Although OpenLaszlo runs in a Web browser it still can be considered a rich
client because of the responsiveness of the user interface and the variety of controls
used to capture and display information.

OpenLaszlo is an extremely powerful framework but it does have one draw-
back: it can only produce a rich user interface within the browser window; it cannot
configure elements such as the browser’s menu bars or affect the general styling
and colors.

3.2. XUL. XUL, which stands for XML user interface language, has the capabili-
ties to configure the browser’s menu bars and affect the general styling and color
scheme and is targeted at the Mozilla browsers [15].

Technically, XUL requires a browser based on the Gecko engine. This includes
all Firefox versions and Netscape from version 6 upwards. In fact, the Firefox
browser itself is built using XUL so instead of using XUL to create a rich client, it
might be better to say using XUL to customize Firefox.

XUL files must be downloaded and intentionally installed by the user. These
files can range from single pages that are designed and act similarly to the Laszlo
LZX files, to packages that add new functionality and completely transform the
browser. Many current add-ins for Firefox are actually XUL packages.

3.3. XAML. The final product we’ll look at is Microsoft XAML which stands for
eXtensible Application Markup Language. XAML is part of the new generation ver-
sion of Microsoft Windows and can be used to create desktop-based or browser-
based applications [12].

XAML is an integral part of the Microsoft new technologies ready to use in
Windows Vista operating system. These technologies expose the following three
foundations: presentation, communication, and workflow. These are combined
with the current .NET 2.0 components to give the .NET Framework 3.0.

To experiment with XAML you’ll need to install the relevant libraries, available
at msdn2.microsoft.com/en-us/library/ms747122.aspx .

3.4. Browsers vs. Rich Clients. The separation of content from presentation and
access to data across HTTP, through Web services and other routes, has given de-
velopers the best of two worlds – a rich and responsive client interface coupled
with the ability to retrieve and edit data from disparate sources.

Impact of modern Web technologies on e-learning platforms 121

There are several rich clients, varying from those that are still Web pages at
heart to those that are definitely desktop applications but with the power to use
data distributed across many machines. Ajax is the primary way of building this
functionality into applications.

One issue for companies always was data sharing. As prices for desktop com-
puters dropped, companies went from having only one machine to having one on
each desk. Centralized data storage was needed alongside individual machines
with large processing power. This gave rise to the idea of a file and print server, a
system still in use today.

A second issue was application deployment. To install an application individ-
ually on numerous machines was a time consuming task, and upgrades and bug
fixes were a drain on manpower and resources, as opposed to the remote installs
and upgrades possible today.

The Internet and the World Wide Web (some years later) led to a new paradigm.
The browser was a new phenomenon. A Web browser runs on a client that has
substantial processing power in its own right but is itself a fairly low user of this
potential. Often most of the processing is done on the server. The browser simply
renders files, usually stored on a remote machine in the form of HTML, and is
capable of presenting data and images to the user as well as accepting input and
returning it to the originating server for processing and storage.

The World Wide Web, conceived by Tim Berners-Lee runs on the Internet using
the HTTP protocol for transmission and relying on other technologies, such as
HTML, for data markup.

Despite its popularity, the Web browser as originally designed has several dis-
advantages:

• Although there are a growing number of standards governing nearly all
aspects of data markup, browsers differ in their compliance and interpre-
tation of these rules. This means that producing an application that looks
and behaves identically in all browsers is virtually impossible.

• This situation is further worsened by the fact that of each browser different
versions are still in use. This means applications must be tested against
dozens of different front ends.

• Because of the Web’s inherent lack of security and the fact that there are
a number of malicious sites in existence, browsers have strict rules about
what an application can do. Client-side storage of data and access to the
local machine’s other features and programs are two examples of possible
restrictions. This means that a lot of the power of the client is not available
for use, even if the user of the application desires it.

• Because the browser is designed to be suitable for all sites, it often has
features that are unsuitable for a specific application as well as missing
those useful on a particular site.

One solution to these drawbacks is the use of rich clients that can take advantage
of local processing power. They are also not hampered by security restrictions
designed to protect users against malicious software, as opposed to applications

122 Cezar Toader

intentionally installed on a machine specifically to solve a business or personal
need.

4. THE CONTENT OF E-LEARNING 2.0

A new concept, e-learning 2.0, is build nowadays and there are many attempts
to define it. e-learning 2.0 starts with the trend towards:

• Content made of small, dynamic, interactive, updatable pieces;

• Content delivered closer to place of work;

• Content delivered in pieces over time.

However, the e-learning 2.0 is closely connected to Web 2.0, when it comes to
distance, asynchronous learning, testing, and keeping records.

The content of e-learning activities is vast and varied, according to the needs
of online learners. Each content type and learning style brings with it specific
challenges to custom course development.

The e-learning audience can be an adult learner involved in professional train-
ing or a young learner. The developers need to create interfaces and activities that
fit the needs of the learners.

The following are some examples of the e-learning methods and learning activ-
ities:

• The tutorial method delivers content mostly as on-screen text. It assumes a
self-motivated, learner.

• The tutorials are usually supplemented with pictures, videos or Flash
movies.

• The case study delivers content mostly as narrative. This activity provides
a real life situation similar to the one the learner might encounter.

• Exploratory learning features open-ended lessons, which require learners to
ask questions and conduct investigations.

• Software Simulations enable the end users to learn a new software applica-
tion through an artificial, asynchronous process.

• Virtual machine simulations allow learners to practice complex processes or
to operate delicate instruments before they are required to follow the same
processes in real life.

• The branching scenarios increase interactivity. It involves a narrative in
which the learner chooses an action and directs the course of the narra-
tive. The branching story prepares the learner for a similar situation in real
life.

Every activity above requires support from interactive, responsive Web 2.0 ap-
plications.

Impact of modern Web technologies on e-learning platforms 123

5. DEVELOPING WEB-BASED LEARNING SYSTEM AT NUBM

At North University of Baia Mare, NUBM, we are developing a Web-based
Learning System for Distance Education Department. Our work has two direc-
tions at the moment: content management systems based on Web programming
[11] and secure network infrastructure [10], see Figure 1.

In other Romanian universities there are also intensive activities on developing
different platforms serving e-learning process. The learner can be in front of a
desktop computer or can be outside the building, on the move, using a PDA [4].

Figure 1. Simple infrastructure for e-learning platform at NUBM

The learning platform can build a complex, consistent view. For tutorials about
technologies, phenomena, technical processes learners need a new user experi-
ence. They need pages with interactivity, dynamic elements, visual effects, and
support for different multimedia. The developing process of a LMS (Learning
Management System) at NUBM is a complex project and involves educators, stu-
dents and engineers.

There are numerous developers which bring consistent arguments to develop
rich clients. A very attractive solution is OpenLaszlo because on this platform
the programmer can build SWF files or DHTML files, having the same aspect and
behavior [8].

124 Cezar Toader

On the other hand, there are many developers which intent to use Flash plu-
gin only when its qualities are necessary and the Web page should look more dy-
namic. They consider more useful to develop Web pages based on XML, DHTML
and JavaScript. This approach has advantages when it comes to bookmark pages,
for example. But major advantages concerning the Web page interactivity appear
when the AJAX technology is used.

6. APPLYING AJAX TECHNOLOGY

The term AJAX means Asynchronous JavaScript and XML and, practically, it is an
open-technologies suite, designated to improve the level of interactivity between
the user and the Web interface. This term was proposed by Jesse James Garret in
2005, but the component technologies of AJAX existed before 2005.

At North University of Baia Mare the developers are accommodated with
ASP.NET AJAX and they are using Visual Web Developer 2005 or Visual Web Studio
2005. The framework offers the necessary controls to build a modern Web appli-
cation. One of the main controls is UpdatePanel which marks the area of partial
updates, see Figure 2.

Figure 2. Defining the partial update zone in a Web page using UpdatePanel
control

A typical Web page in front of the learner should look like in the Figure 3. There
is a main panel with the relevant information using the most of the page, but there
are also other important frames: the title zone at the top, the status and messages
zone at the bottom, and a navigation panel in the left side.

Impact of modern Web technologies on e-learning platforms 125

The navigation panel shows the structure of the course as a tree which can ex-
pand or collapse. The items of the course are the leaf of the tree. Clicking on an
item triggers the main panel refresh and change of shown topic, see Figure 3.

Figure 3. The Web page for e-learning at NUBM
The tree shown in the navigation panel is read from a XML file. A very impor-

tant quality of this navigation panel is that it is collapsible and resizable.

7. CONCLUSIONS

As a first conclusion, three technologies should be ready for Web 2.0:
• XSLT appears to be a good solution for keeping your JavaScript slim and

focused on treatments, while leaving all the low-level formatting to XSLT,
together with higher-level tasks such as sorting and filtering content.

• SVG is a very powerful technology. It is an XML-based open standard
that can be generated by XML tools and animated either declaratively or
in JavaScript. Unfortunately, its implementation is still immature.

• Although XForms is a relatively young technology, it can be used by to-
day’s browsers through client/server implementations. With this architec-
ture, XForms is a declarative alternative that can be used to deploy Web 2.0
applications using JavaScript and Ajax on the client.

On the other hand, rich clients appear as a viable alternative to usual browsers.
Rich clients can take advantage of local processing power. They are also not ham-
pered by security restrictions designed to protect users against malicious software.

126 Cezar Toader

All three rich client frameworks above have their place on the rich client podium.
Each has its own strengths and weaknesses.

Nowadays, it is possible to obtain interesting and attractive visual effects in a
Web page using AJAX technology. Thus, the web page behavior is almost similar
with the behavior of a desktop application and this leads to a new and interesting
user experience.

AJAX is a group of technologies for remote scripting and its purpose is to help cre-
ating Web interfaces with increased interactivity, dynamics and execution speed,
comparing with the old technologies known as Web 1.0. AJAX technology features
[6]:

• Support for data presentation (XHTML and CSS);
• Support for interactivity and dynamic rendering (based on Document

Object Model);
• Support for data exchange and manipulation (XML, JSON, XSLT);
• Support for asynchronous data transfer (using XMLHttpRequest object);
• Support for data processing (JavaScript / ECMAScript).

Nowadays, programmers develop Web 2.0 applications to build modern web-
learning systems. AJAX technology is used to create interfaces with increased
interactivity, dynamics and execution speed.

REFERENCES

[1] Berglund, A., (ed.), XML Path Language XPath 2.0, 2007, www.w3.org/TR/xpath20/
[2] Buraga, S., XML Technologies, Polirom Publishing House, 2006
[3] Buraga, S., An Extensible Framework for Building Interactive Courses on Web, 5th International Sym-

posium on Economic Informatics - IE 2001, Bucharest, 2001
[4] Huţanu., C., Vlaicu, A., Turcu, C., Risteiu, M., CmL-plus: A new vision for the first m-learning platform

in the Romanian DE System, 6th WSEAS Int. Conf. on Applied Computer Science, China, 2007, pp.
327

[5] HTML – W3C, HTML 4.01 Specifications, http://www.w3.org/TR/html401/
[6] Garret, J.J., AJAX: A New Approach to Web Applications, AdaptivePath, 2005,

http://adaptivepath.com/publications/essays/archives/000385.php
[7] Kay, M. (ed.), XSL Transformation (XSLT), Version 2.0, 2007, www.w3.org/TR/xslt20/
[8] OpenLaszlo 4.0, 2007 – www.openlaszlo.org
[9] SVG – W3C, Scalable Vector Graphics (SVG), http://www.w3.org/Graphics/SVG/

[10] Toader, C., Petrovan, A., Costea, C., Business Models and Secure Web learning on PKI, The 7th Inter-
national Multidisciplinary Conference, North University of Baia Mare, 2007, pp. 701

[11] Toader, C., Web Applications Programming, Risoprint Publishing House, 2005
[12] XAML – MSDN, http: // msdn2.microsoft.com/en-us/library/ ms747122.aspx
[13] XForms – W3C, The Forms Working Group, http://www.w3.org/MarkUp/Forms/
[14] XSLT – W3C, Extensible Stylesheet Language (XSL) Version 1.1, December 2006,

http://www.w3.org/TR/2006/REC-xsl11-20061205/
[15] XUL – Mozilla, XML User Interface Language (XUL), 2007, www.mozilla.org/projects/xul

NORTH UNIVERSITY OF BAIA MARE

DEPARTMENT OF COMPUTER ENGINEERING AND ELECTRONICS

DR. VICTOR BABEŞ

430083 BAIA MARE, ROMANIA

HTTP://WWW.UBM.RO

E-mail address: cezar.toader@gmail.com

