A note on the Nagel and Gergonne points

Dorin Andrica and Khoa Lu Nguyen

AbSTRACT. In this note, we study some special properties of the Nagel point, Gergonne point, and their adjoints.

1. Introduction

Given a triangle $A B C$, denote by O the circumcenter, $G e$ the Gergonne point, and N the Nagel point of $A B C$. It is known that the distance $O N$ is equal to $R-2 r$, here R and r are respectively the circumradius and inradius of $A B C$ (see, for instance, [1]). In Section 4, we will see that the first part of the famous Feurbach's theorem, which states that the nine-point circle is intouched by the incircle, follows from this beautiful distance.

What about the second part of Feurbach's theorem, which states that the ninepoint circle is extouched by the excircles? With similar direction, we shall use the points N_{a}, N_{b}, N_{c}, as the adjoints of the Nagel point N, that share similar properties of N. The adjoint Nagel points N_{a}, N_{b}, N_{c} are extensively studied in [5, pp. 260-293]. Also, in this paper, we will study some interesting properties of this configuration together with the adjoints G_{a}, G_{b}, G_{c} of the Gergonne point $G e$ which are defined as the isotomic conjugate of N_{a}, N_{b}, N_{c} respectively.

2. The Nagel configuration

Let G, H, I are respectively the centroid, orthocenter, and incenter of $A B C$. We first study an important characteristic of the Nagel point N.

Theorem 2.1. The Furhmann center F of $A B C$ is the midpoint of $H N$; and the centroid G divides the segment NI with ratio -2 .

[^0]

Figure 1
Proof. Let A_{1}, B_{1}, C_{1} be the midpoints of the arcs $B C, C A, A B$ not containing the points A, B, C respectively. Suppose $A^{\prime}, B^{\prime}, C^{\prime}$ are the reflections of A_{1}, B_{1}, C_{1} through their corresponding sides $B C, C A, A B$. The Furhmann center is defined as the circumcenter of $A^{\prime} B^{\prime} C^{\prime}$. In order to prove F is the midpoint of $H N$, we shall prove that $H N$ is a diameter of the circumcircle of $A^{\prime} B^{\prime} C^{\prime}$, i.e. the Furhmann circle.

Consider the reflection through the midpoint M of $B C$ that maps the orthocenter H to the antipode U of A, the point A^{\prime} to A_{1}, the Nagel point to a point T_{a}, and the incenter I to a point J_{a}. Since U is the antipode of A, it is sufficient to prove that T_{a} lies on the line $A A_{1}$.

Suppose A_{a} is the point of tangency of the A-excircle $\left(I_{a}\right)$ with $B C$. It follows that A, N, A_{a} are collinear and I_{a}, J_{a}, A_{a} are collinear. We have

$$
\begin{gathered}
\frac{A_{a} J_{a}}{J_{a} I_{a}}=\frac{r}{r_{a}}=\frac{s-a}{s} ; \quad \frac{A I}{A I_{a}}=\frac{r}{r_{a}}=\frac{s-a}{s} \\
\frac{N K}{A K}=\frac{1}{1+\frac{A N}{N K}}=\frac{1}{1+\frac{s-b}{s-a}+\frac{s-b}{s-a}}=\frac{s-a}{s}
\end{gathered}
$$

Figure 2

Thus,

$$
\frac{A_{a} J_{a}}{J_{a} I_{a}}=\frac{A I}{A I_{a}}=\frac{N K}{A K} .
$$

Hence, we obtain $N J_{a}$ is parallel to $A I_{a}$, and $I J_{a}$ is parallel to $A A_{a}$.
On the other hand, since $I N J_{a} T_{a}$ is a parallelogram, we obtain $N J_{a}$ is parallel to $I T_{a}$. Since $A I_{a}$ and $I T_{a}$ both pass through the incenter I and are parallel to $I T_{a}$, it follows that T_{a} lies on the bisector $A I_{a}$. Since A_{1} lies on $A I_{a}$, we obtain T_{a} lies on $A A_{1}$. Therefore, F is the midpoint of $H N$.

Figure 3
Since M is the midpoint of $T_{a} N$ and $M I$ is parallel to $A N$, we infer that I is the midpoint of $A T_{a}$. Applying Menelaus's theorem to triangle $A T_{a} M$ and three points I, G, N it follows that I, G, N are collinear and $\frac{G N}{G I}=-2$. The proof is complete.

Figure 4

Let A_{b} and A_{c} be the points of tangency of the A-excircle with $A C$ and $A B$. Define B_{c} and B_{a}, C_{a} and C_{b} respectively. Let N_{a}, N_{b}, N_{c} be respectively the intersections of $B B_{a}$ and $C C_{a}, C C_{b}$ and $A A_{b}, A A_{c}$ and $B B_{c}$. Call A_{2}, B_{2}, C_{2} the midpoints of the arcs $B C, C A, A B$ containing A, B, C and suppose $A^{\prime} 2, B^{\prime} 2, C^{\prime} 2$ be their reflections to the corresponding sides $B C, C A, A B$. Denote by F_{a}, F_{b}, F_{c} the circumcenters of triangles $A_{1}^{\prime} B_{2}^{\prime} C_{2}^{\prime}, B_{1}^{\prime} C_{2}^{\prime} A_{2}^{\prime}, C_{1}^{\prime} A_{2}^{\prime} B_{2}^{\prime}$. Then by Conway's extraversion to Theorem 2.1, it follows that F_{a}, F_{b}, F_{c} are respectively the midpoints of $H N_{a}, H N_{b}, H N_{c}$ and the centroid G divides the segments $I_{a} N_{a}, I_{b} N_{b}, I_{c} N_{c}$ with ratio - 2 . Thus, we get the following result.

Theorem 2.2. The triangle $N_{a} N_{b} N_{c}$ is homothetic to the external triangle $I_{a} I_{b} I_{c}$ with center G and ratio -2.

Since I is the orthocenter of $I_{a} I_{b} I_{c}$, we obtain the following consequence.
Corollary 2.1. The Nagel point N is the orthocenter of $N_{a} N_{b} N_{c}$.
Suppose $U V W$ is the antimedial triangle of $A B C$. Since

$$
\frac{G U}{G A}=\frac{G V}{G B}=\frac{G W}{G C}=-2
$$

and $A B C$ is the orthic triangle of $I_{a} I_{b} I_{c}$, another corollary follows.

Figure 5
Corollary 2.2. The antimedial triangle $U V W$ of $A B C$ is the orthic triangle of $I_{a} I_{b} I_{c}$.
We end this section by a simple theorem inferred from Ceva's theorem.
Theorem 2.3. Triangles $N_{a} N_{b} N_{c}$ and $A B C$ are perspective at the Gergonne point Ge.

$$
\text { 3. The triangle } G_{a} G_{b} G_{c}
$$

We first state a simple result following from the definition and Ceva's theorem.
Theorem 3.1. Triangle $G_{a} G_{b} G_{c}$ and $A B C$ are perspective at the Nagel point N.
In this section, we give an interesting synthetic proof to the following property.
Theorem 3.2. The triangle $G_{a} G_{b} G_{c}$ and the excentral triangle $I_{a} I_{b} I_{c}$ are perspective at the de Longchamp point L.

In order to prove this theorem, we need the following lemmas.

Lemma 3.1. The four lines $I_{b} I_{c}, G_{b} G_{c}, B_{b} C_{c}$ and $B_{c} C_{b}$ are concurrent.
Proof. We first notice that C_{c} and B_{b} are reflections of C_{b} and B_{c} through $I_{b} I_{c}$ respectively. Hence $B_{b} C_{c}$ is the reflection of $B_{c} C_{b}$ through $I_{b} I_{c}$. It follows that $B_{b} C_{c}$, $B_{c} C_{b}, I_{b} I_{c}$ are concurrent. It is sufficient now to prove that $B_{b} C_{c}, B_{c} C_{b}$ and $G_{b} G_{c}$ are concurrent. Consider two triangles $B_{c} G_{b} B_{b}$ and $C_{b} G_{c} C_{c}$. Notice that N_{a} is the intersection of $G_{b} B_{c}$ and $G_{c} C_{b}, N$ is the intersection of $G_{b} B_{b}$ and $G_{c} C_{c}$. If we can show that $N N_{a}, B_{b} B_{c}$ and $C_{c} C_{b}$ are concurrent, then by Desargues' theorem, we are done.

Figure 6
From Section 2, we know that $N N_{a}$ is parallel to $I I_{a}$. Since $I I_{a}$ is perpendicular to $I_{b} I_{c}, N N_{a}$ is perpendicular to $I_{b} I_{c}$. On the other hand, since C_{c} and B_{b} are reflections of C_{b} and B_{c} through $I_{b} I_{c}$ respectively, it follows that $B_{b} B_{c}$ and $C_{c} C_{b}$ are both perpendicular to $I_{b} I_{c}$. Thus, we obtain $N N_{a}, B_{b} B_{c}, C_{c} C_{b}$ are concurrent at a point at infinity. Therefore, the lemma is completely proved.

Lemma 3.2. The circumcenter O^{\prime} of $I_{a} I_{b} I_{c}$ is the reflection of I through O.
It is also well known that O^{\prime} is the perspector of triangle $I_{a} I_{b} I_{c}$ and $A_{a} B_{b} C_{c}$ since $I_{a} O^{\prime}$ is perpendicular to $B C, I_{b} O^{\prime}$ is perpendicular to $C A, I_{c} O^{\prime}$ is perpendicular to $A B$.

Lemma 3.3. Let X, Y, Z be the intersections of $I_{c} C_{b}$ and $I_{b} B_{c}, I_{c} C_{a}$ and $I_{a} A_{c}, I_{a} A_{b}$ and $I_{b} B_{a}$. Then $N_{a} N_{b} N_{c}$ and $X Y Z$ are homothetic with ratio 2.

Proof. Since $I_{a} O^{\prime}$ is perpendicular to $B C, I_{b} O^{\prime}$ is perpendicular to $C A, I_{c} O^{\prime}$ is perpendicular to $A B$, we obtain $I_{c} Y I_{a} O^{\prime}$ and $I_{b} Z I_{a} O^{\prime}$ are parallelograms. Thus, $I_{b} I_{c} Y Z$ is also a parallelogram. This yields that $I_{b} I_{c}=Y Z$ and they are parallel in opposite directions. By similar argument, we obtain that $I_{a} I_{b} I_{c}$ are homothetic with ratio -1. From Section 1, we know that triangles $N_{a} N_{b} N_{c}$ and $I_{a} I_{b} I_{c}$ are homothetic with ratio -2 . Therefore, $N_{a} N_{b} N_{c}$ and $X Y Z$ are homothetic with ratio 2 . The lemma is proved.

Figure 7
We will now prove Theorem 3.2.

Proof. We first show that $I_{a} I_{b} I_{c}$ and $G_{a} G_{b} G_{c}$ are perspective at a point L. From Lemma 3.2, we have $I_{b} I_{c}, G_{b} G_{c}, B_{b} C_{c}$ are concurrent. Denote this point D. Similarly, we define the points E and F.

Since triangle $I_{a} I_{b} I_{c}$ is perspective with $A_{a} B_{b} C_{c}$ at the point O^{\prime}, this implies from Desargues's theorem that D, E, F are collinear. Again, since D, E, F are collinear, by Desargues's theorem, we obtain $I_{a} I_{b} I_{c}$ and $G_{a} G_{b} G_{c}$ are perspective at a point L.

Now, we shall prove that L is the De Longchamp point. We shall need the Lemma 3.2 again. We know that $I_{b} I_{c}, B_{c} C_{b}, G_{b} G_{c}$ are concurrent. Consider two perspective triangles $I_{b} G_{b} B_{c}$ and $I_{c} G_{c} C_{b}$. Then by Desargues' theorem, we obtain that L lies on $N_{a} X$. By similar arguments, it follows that $N_{a} X, N_{b} Y, N_{c} Z$ are concurrent at L.

From Lemma 3.3, we know that $N_{a} N_{b} N_{c}$ and $X Y Z$ are homothetic with ratio 2 . Hence L is the center of similitude. Since N and O^{\prime} are respectively the orthocenter of $N_{a} N_{b} N_{c}$ and $X Y Z$, we obtain that $\frac{L N}{L O^{\prime}}=2$. Since

$$
\frac{G I}{G N} \frac{L N}{L O^{\prime}} \frac{O O^{\prime}}{O I}=1,
$$

according to Menelaus' theorem, three points G, O, L are collinear. Applying Menelaus's theorem again to triangle $N G L$ and three collinear points I, O, O^{\prime}, we obtain that $\frac{O L}{O G}=-3$. By definition, it yields that L is the de Longchamp point of $A B C$. And the theorem is proved.

4. COMPLEX COORDINATES APPROACH

In this section, we shall compute the distance between the circumcircle O and N_{a} by using complex numbers.

Figure 8
Assume that the circumcenter O of triangle $A B C$ is the origin of the complex plan and let z_{a}, z_{b}, z_{c} be the complex coordinates of A, B, C respectively. It is not difficult to calculate the complex coordinates of the points $G, H, I, N, I_{a}, I_{b}, I_{c}$ (see [1, pp. 103-105]):

$$
\begin{gathered}
z_{G}=\frac{z_{A}+z_{B}+z_{C}}{3}, z_{H}=z_{A}+z_{B}+z_{C}, z_{I}=\frac{a z_{A}+b z_{B}+c z_{C}}{2 s} \\
z_{N}=\frac{(s-a) z_{A}+(s-b) z_{B}+(s-c) z_{C}}{s}, z_{I_{a}}=\frac{-a z_{A}+b z_{B}+c z_{C}}{2(s-a)}
\end{gathered}
$$

These coordinates are used in the book [1] to solve various geometric problems, for instance to determine some important distances in triangle $A B C$. The distance $O N=R-2 r$ has already been mentioned in the introduction (see [1, Subsection 4.6.3, Theorem 6]). This beautiful relation is equivalent to the first part of Feurbach's theorem, which states that the nine-point circle is intouched by the incircle. Indeed, we have the following configuration, where points O, G, W, H lies on the Euler line while I, G, N lie on the Nagel line.

Figure 9

Since $\frac{G I}{G N}=\frac{G W}{G O}=\frac{1}{2}$, we obtain $I W$ is parallel to $O N$ and $I W=\frac{O N}{2}=\frac{R}{2}-r$. Notice that $\frac{R}{2}$ is the radius of the nine-point circle, r is the radius of the incircle and $I W$ is the distance between the two centers. Therefore, the nine-point circle is intouched by the incircle.

We will now proceed to calculate the distance $O N_{a}$. From Section 2, we know that $\frac{G N_{a}}{G I_{a}}=-2$. Thus, $z_{G}-z_{N_{a}}=2\left(z_{I_{a}}-z_{G}\right)$. Using the complex coordinates of G and I_{a} above, it follows that

$$
z_{N_{a}}=\frac{s z_{A}-(s-c) z_{B}-(s-b) z_{C}}{s-a}=\frac{r_{a}}{r} z_{A}-\frac{r_{a}}{r_{c}} z_{B}-\frac{r_{a}}{r_{b}} z_{C}
$$

We shall calculate the distance $O N_{a}$ by using the real product of two complex number z_{1} and z_{2} and defined as

$$
z_{1} \cdot z_{2}=\frac{z_{1} \bar{z}_{2}+\bar{z}_{1} z_{2}}{2}
$$

It is not difficult to see that the real product is a real number, it is commutative, distributive with respect to addition and satisfies

$$
z \cdot z=|z|^{2}
$$

We also have

$$
z_{A} \cdot z_{B}=R^{2}-\frac{c^{2}}{2}, \quad z_{B} \cdot z_{C}=R^{2}-\frac{a^{2}}{2}, \quad z_{C} \cdot z_{A}=R^{2}-\frac{b^{2}}{2}
$$

Indeed, it follows from

$$
c^{2}=\left|z_{A}-z_{B}\right|^{2}=\left(z_{A}-z_{B}\right) \cdot\left(z_{A}-z_{B}\right)=z_{A}^{2}-2 z_{A} \cdot z_{B}+z_{B}^{2}=2 R^{2}-2 z_{A} z_{B}
$$

Thus

$$
\begin{gathered}
O N_{a}^{2}=\left|z_{N_{a}}\right|^{2}=r_{a}^{2} R^{2}\left(\frac{1}{r^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}\right) \\
+r_{a}^{2}\left(\frac{2}{r_{b} r_{c}} z_{B} \cdot z_{C}-\frac{2}{r r_{c}} z_{A} \cdot z_{B}-\frac{2}{r r_{b}} z_{A} \cdot z_{C}\right) \\
=r_{a}^{2} R^{2}\left(\frac{1}{r^{2}}+\frac{1}{r_{b}^{2}}+\frac{1}{r_{c}^{2}}\right) \\
+r_{a}^{2}\left[\frac{2}{r_{b} r_{c}}\left(R^{2}-\frac{a^{2}}{2}\right)-\frac{2}{r r_{c}}\left(R^{2}-\frac{c^{2}}{2}\right)-\frac{2}{r r_{b}}\left(R^{2}-\frac{b^{2}}{2}\right)\right] \\
=r_{a}^{2} R^{2}\left(-\frac{1}{r}+\frac{1}{r_{b}}+\frac{1}{r_{c}}\right)^{2} \\
+r_{a}^{2}\left(\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}}\right) \\
=R^{2}+r_{a}^{2}\left(\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}}\right) .
\end{gathered}
$$

Now, let us prove that the following relation

$$
\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}}=\frac{4 R}{r_{a}}+4
$$

By replacing

$$
r=4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}, \quad r_{a}=4 R \sin \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}
$$

etc., we obtain

$$
\begin{gathered}
\frac{-a^{2}}{r_{b} r_{c}}+\frac{b^{2}}{r r_{b}}+\frac{c^{2}}{r r_{c}} \\
=\frac{4}{\sin A \sin B \sin C}\left(-\sin ^{2} \frac{A}{2} \sin A+\cos ^{2} \frac{B}{2} \sin B+\cos ^{2} \frac{C}{2} \sin C\right) \\
=\frac{2}{\sin A \sin B \sin C}[-(1-\cos A) \sin A+(1+\cos B) \sin B+(1+\cos C) \sin C] \\
=\frac{2(\sin B+\sin C-\sin A)}{\sin B \sin C}+\frac{\sin 2 A+\sin 2 B+\sin 2 C}{\sin A \sin B \sin C} \frac{B}{2} \sin \frac{C}{2} \\
=\frac{\sin A \sin B \sin C}{\sin A \sin B \sin C} \\
\frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \\
=4=\frac{4 R}{r_{a}}+4 .
\end{gathered}
$$

Figure 10
Therefore, we obtain

$$
O N_{a}^{2}=R^{2}+r_{a}^{2}\left(\frac{4 R}{r_{a}}+4 r_{a}^{2}\right)=\left(R+2 r_{a}\right)^{2} \quad \text { or } \quad O N_{a}=R+2 r_{a}
$$

The last relation also appears in [5, pp. 283], where it derived from the Feurbach's theorem. We have obtained a direct proof for the distance $O N_{a}$.

The above relation is equivalent to the second part of Feurbach's theorem. Consider the following configuration, where I_{a}, G, N_{a} is another line of Nagel type. We have

$$
I_{a} W=\frac{O N_{a}}{2}=\frac{R}{2}+r_{a}
$$

Therefore, the A-excircle (I_{a}) extouches the nine-point circle. Similarly, the other excircles also extouch the nine-point circle, and the Feurbach's second part is completely proved.

References

[1] Andreescu, T., Andrica, D., Complex Number from A to... Z, Birkhauser, Boston-Basel-Berlin, 2006
[2] Coxeter, H.S.M, Greitzer, S.L.,Geometry Revisited, Random House, New York, 1967
[3] Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry, The Mathematical Association of America, New Mathematical Library 37, 1995
[4] Johnson, R.A., Advanced Euclidean Geometry, New York, 1960
[5] Mihălescu, C., The Geometry of Remarkable Elements. Some Points, Lines and Circles (Romanian), Editura Tehnică, Bucharest, 1957

Dorin Andrica
Babeş-Bolyai University
Faculty of Mathematics and Computer Science
40084 CLUJ-NApOCA, ROMANIA
E-mail address: dandrica@math.ubbcluj.ro

Khoa Lu Nguyen

Massachusetts Institute of Technology, student
77 MAssachusetts Avenue, CAMbridge, MA, 02139-4307
E-mail address: treegoner@yahoo.com

[^0]: Received: 11.01.2008. In revised form: 24.01.2008.
 2000 Mathematics Subject Classification. 51A20, 51M04.
 Key words and phrases. Nagel point, Gergonne point, Nagel adjoint points, Gergonne adjoints points, Feurbach's theorem, complex coordinates.

