CREATIVE MATH. & INF. 17 (2008), 142 - 146

# Some separations results by inversion

#### DAN BRÂNZEI AND CRISTINEL MORTICI

ABSTRACT. In this paper we solve and extend a separation problem given at the Swedish Mathematical Olympiad in 1984, using the inversion method.

#### 1. PRELIMINARIES

First we give some construction results (e.g. [1]. [2]).

**Problem 1.1.** Let there be given two points A, B and a circle C. Determine a circle  $\mathcal{M}$  passing through A, B and which is tangent to C.

**Solution.** Let  $L \in C$  be arbitrary chosen. In generally, the circle (ABL) intersects the second time C in K. Now, we can see that the line KL belongs to a pencil of straight lines and let F be its radical center.

In case L = K (= T the requested point), KL becomes tangent TF to C. In conclusion, T is tangent point of C with the pencil. If F is exterior to C, there are two solutions. The situation  $F \in C$  comes when  $A \in C$  or  $B \in C$ . If F lies inside C, there are no solutions; this situation appears in case when A and B are separated by C.



#### Figure 1

In order to broach this problem by inversion, let us consider an inversion **I** with pole  $P \in C$ . In this way, the above problem converts in the following form:

**Problem 1.2.** Let there be given two points A', B' and a line *d*. Determine a circle  $\mathcal{M}'$  passing through A', B' and which is tangent to *d*.

Received: 29.10.2007. In revised form: 21.01.2008.

<sup>2000</sup> Mathematics Subject Classification. 51H05, 51F20.

Key words and phrases. Inversion, radical center, orthogonal circles.

**Solution.** This problem has a trivial elementary solution. Indeed, let us assume that  $F \in A'B' \cap d$ . Now we can consider the point *T* (two solutions) with  $FT^2 = FA' \cdot FB'$ , etc.



Figure 2

Other similar nice results can be found for example in [2], [3]. At the Final Round of the Swedish Mathematical Olympiad in 1984 was given the following problem:

**Problem 1.3.** Let *A*, *B* be two points inside a circle  $\omega$ . Then there exists a circle  $\omega_1$  passing through *A* and *B* such that  $\omega \cap \omega_1 = \emptyset$ .

**Elementary solution.** Let *O* be the center of  $\omega$ . If OA = OB, then take  $\omega_1 = \omega'$  with center *O* and radius *OA*.



## Figure 3

Further, let us assume that OA > OB. Let C be the second intersection point of AB with  $\omega'$ . Let D be the point of the line-segment AO such that BD || OC. Then take  $\omega_1$  the circle with center D and radius DA. It is internally tangent to  $\omega'$ , thus  $\omega_1$  lies inside  $\omega$ .



**Solution.** Let us denote by M, N the intersection points of the line AB with circle  $\omega$ , such that  $A \in (MB)$ .



Figure 5

Let I be the inversion with pole M and power  $k = MA \cdot MB$ . We have  $\mathbf{I}(A) = B$ and  $\mathbf{I}(B) = A$ , so all circles passing through A and B are invariant under the inversion I. If  $N' = \mathbf{I}(N)$ , then  $N' \in (AM)$ . Let  $\Delta$  be the perpendicular line on OM through N'. The inversion I transforms circle  $\omega$  in a perpendicular line on MO. But  $\mathbf{I}(N) = N'$ , thus  $\mathbf{I}(\omega) = \Delta$ . Now, let  $\omega'$  be a circle passing through A, B such that  $\omega' \cap \Delta = \emptyset$ . It follows that  $\mathbf{I}(\omega') \cap \mathbf{I}(\Delta) = \emptyset$ , which is  $\omega' \cap \omega = \emptyset$ . In conclusion, we can take  $\omega_1 = \omega'$ .

#### 2. The results

We also have the following separation result:

**Proposition 2.1.** Let there be given A, B two points outside a circle  $\omega$ . Then there exists a circle  $\omega_2$  passing through A and B such that  $\omega_2 \cap \omega = \emptyset$ .

*Proof.* Let *O* be the center of the circle  $\omega$  and let *r* be its radius. Let us consider the inversion **I** with pole *O* and power  $k = r^2$ . Obviously,  $\omega$  is invariant under the inversion **I**.



### Figure 6

The points  $A' = \mathbf{I}(A)$  and  $B' = \mathbf{I}(B)$  lie inside the inversion circle  $\omega$ . Accordingly with Problem 1.3, we can find a circle  $\omega_1$  passing through A' and B' such that  $\omega_1 \cap \omega = \emptyset$ . It results that  $\mathbf{I}(\omega_1) \cap \mathbf{I}(\omega) = \emptyset$ , which is  $\mathbf{I}(\omega_1) \cap \omega = \emptyset$ . In conclusion, the circle  $\omega_2 = \mathbf{I}(\omega_1)$  satisfies the hypothesis.

Using these ideas from the previous solutions, we give another two results concerning intersection of two circles.

**Proposition 2.2.** Let there be given two points A, B and a circle  $\omega$ . Then there exists an unique circle  $\omega_1$  (or a line) orthogonal on  $\omega$  such that  $A, B \in \omega_1$ .

*Proof.* First assume that  $M \in AB \cap \omega$  such that  $A \in (MB)$ .



## Figure 7

Let I be the inversion of pole M and power  $k = MA \cdot MB$ . Denote  $\Delta = I(\omega)$ . The perpendicular bisector of the line-segment (AB) meets  $\Delta$  in X. Then can take  $\omega_1$  the circle with center X passing through A, B. Indeed, the curves  $\omega_1$  and  $\Delta$  are perpendicular. The inversion preserves the angles, thus  $\omega_1 = I(\omega_1)$  and  $\omega = I(\Delta)$  are also perpendicular. That means that the circles  $\omega_1$  and  $\omega$  are orthogonal. Finally, assume that  $AB \cap \omega = \emptyset$ . It results that A, B lie outside  $\omega$ . Let **I** be the inversion with center O and power  $k = r^2$ , where O is the center of  $\omega$  and r is its radius. Then the points  $A' = \mathbf{I}(A)$  and  $B' = \mathbf{I}(B)$  lie inside  $\omega$ . In particular,  $A'B' \cap \omega \neq \emptyset$ . We proved that we can find a circle  $\omega_1$  orthogonal on  $\omega$  such that  $A', B' \in \omega_1$ . Then the circle  $\omega_2 = \mathbf{I}(\omega_1)$  is orthogonal on  $\omega$  because  $\mathbf{I}(\omega) = \omega$ . Moreover,  $A, B \in \omega_2$ 

**Proposition 2.3.** Let there be given two points A, B and a circle  $\omega$ . Assume that A, B does not lie both on  $\omega$ . Then there exists an unique circle  $\omega_2$  passing through A, B and meeting  $\omega$  in two antipodal points.

*Proof.* Let I be the inversion of center *O* and power  $k = -r^2$ , where *O* is the center of  $\omega$  and *r* is its radius. It is well known that inversions with negative power invariate the circles which intersect the inversion circle in two antipodal points.



#### Figure 8

Let  $A' = \mathbf{I}(A)$  and  $B' = \mathbf{I}(B)$ .

Then the circumcircle  $\omega_2$  of the quadrilateral AB'A'A is invariant under the inversion **I**. Hence  $\omega_2$  intersects  $\omega$  in two antipodal points.

#### REFERENCES

- [1] Brânzei, D., Mortici, C., Metoda inversiunii în geometrie, Editura Plus, 2000
- [2] Mortici, C., Probleme pregătitoare pentru concursurile de matematică, Ed. Gil, Zalău, 1999
- [3] Mortici, C., Sfaturi matematice, Editura Minus, Târgoviște, 2007
- [4] Miron, R., Brânzei, D., Backgrounds of Arithmetic and Geometry. An Introduction, World Scientific, Singapore, 1995

DAN BRÂNZEI A. I. CUZA UNIVERSITY DEPARTMENT OF MATHEMATICS BD. COPOU 11 700460 IAŞI, ROMANIA *E-mail address*: dabran@uaic.ro

CRISTINEL MORTICI VALAHIA UNIVERSITY DEPARTMENT OF MATHEMATICS BD. UNIRII 18 130082 TÂRGOVIȘTE, ROMANIA *E-mail address:* cmortici@valahia.ro

146