Some separations results by inversion

Dan Brânzei and Cristinel Mortici

ABSTRACT. In this paper we solve and extend a separation problem given at the Swedish Mathematical Olympiad in 1984, using the inversion method.

1. Preliminaries

First we give some construction results (e.g. [1]. [2]).
Problem 1.1. Let there be given two points A, B and a circle \mathcal{C}. Determine a circle \mathcal{M} passing through A, B and which is tangent to \mathcal{C}.

Solution. Let $L \in \mathcal{C}$ be arbitrary chosen. In generally, the circle $(A B L)$ intersects the second time \mathcal{C} in K. Now, we can see that the line $K L$ belongs to a pencil of straight lines and let F be its radical center.

In case $L=K(=T$ the requested point), $K L$ becomes tangent $T F$ to \mathcal{C}. In conclusion, T is tangent point of \mathcal{C} with the pencil. If F is exterior to \mathcal{C}, there are two solutions. The situation $F \in \mathcal{C}$ comes when $A \in \mathcal{C}$ or $B \in \mathcal{C}$. If F lies inside \mathcal{C}, there are no solutions; this situation appears in case when A and B are separated by \mathcal{C}.

Figure 1
In order to broach this problem by inversion, let us consider an inversion I with pole $P \in \mathcal{C}$. In this way, the above problem converts in the following form:
Problem 1.2. Let there be given two points A^{\prime}, B^{\prime} and a line d. Determine a circle \mathcal{M}^{\prime} passing through A^{\prime}, B^{\prime} and which is tangent to d.

Received: 29.10.2007. In revised form: 21.01.2008.
2000 Mathematics Subject Classification. 51H05, 51F20.
Key words and phrases. Inversion, radical center, orthogonal circles.

Solution. This problem has a trivial elementary solution. Indeed, let us assume that $F \in A^{\prime} B^{\prime} \cap d$. Now we can consider the point T (two solutions) with $F T^{2}=$ $F A^{\prime} \cdot F B^{\prime}$, etc.

Figure 2
Other similar nice results can be found for example in [2], [3]. At the Final Round of the Swedish Mathematical Olympiad in 1984 was given the following problem:

Problem 1.3. Let A, B be two points inside a circle ω. Then there exists a circle ω_{1} passing through A and B such that $\omega \cap \omega_{1}=\emptyset$.

Elementary solution. Let O be the center of ω. If $O A=O B$, then take $\omega_{1}=\omega^{\prime}$ with center O and radius $O A$.

Figure 3
Further, let us assume that $O A>O B$. Let C be the second intersection point of $A B$ with ω^{\prime}. Let D be the point of the line-segment $A O$ such that $B D \| O C$. Then take ω_{1} the circle with center D and radius $D A$. It is internally tangent to ω^{\prime}, thus ω_{1} lies inside ω.

Figure 4

Solution. Let us denote by M, N the intersection points of the line $A B$ with circle ω, such that $A \in(M B)$.

Figure 5
Let \mathbf{I} be the inversion with pole M and power $k=M A \cdot M B$. We have $\mathbf{I}(A)=B$ and $\mathbf{I}(B)=A$, so all circles passing through A and B are invariant under the inversion I. If $N^{\prime}=\mathbf{I}(N)$, then $N^{\prime} \in(A M)$. Let Δ be the perpendicular line on $O M$ through N^{\prime}. The inversion I transforms circle ω in a perpendicular line on $M O$. But $\mathbf{I}(N)=N^{\prime}$, thus $\mathbf{I}(\omega)=\Delta$. Now, let ω^{\prime} be a circle passing through A, B such that $\omega^{\prime} \cap \Delta=\emptyset$. It follows that $\mathbf{I}\left(\omega^{\prime}\right) \cap \mathbf{I}(\Delta)=\emptyset$, which is $\omega^{\prime} \cap \omega=\emptyset$. In conclusion, we can take $\omega_{1}=\omega^{\prime}$.

2. The results

We also have the following separation result:
Proposition 2.1. Let there be given A, B two points outside a circle ω. Then there exists a circle ω_{2} passing through A and B such that $\omega_{2} \cap \omega=\emptyset$.

Proof. Let O be the center of the circle ω and let r be its radius. Let us consider the inversion I with pole O and power $k=r^{2}$. Obviously, ω is invariant under the inversion I.

Figure 6
The points $A^{\prime}=\mathbf{I}(A)$ and $B^{\prime}=\mathbf{I}(B)$ lie inside the inversion circle ω. Accordingly with Problem 1.3, we can find a circle ω_{1} passing through A^{\prime} and B^{\prime} such that $\omega_{1} \cap \omega=\emptyset$. It results that $\mathbf{I}\left(\omega_{1}\right) \cap \mathbf{I}(\omega)=\emptyset$, which is $\mathbf{I}\left(\omega_{1}\right) \cap \omega=\emptyset$. In conclusion, the circle $\omega_{2}=\mathbf{I}\left(\omega_{1}\right)$ satisfies the hypothesis.

Using these ideas from the previous solutions, we give another two results concerning intersection of two circles.
Proposition 2.2. Let there be given two points A, B and a circle ω. Then there exists an unique circle ω_{1} (or a line) orthogonal on ω such that $A, B \in \omega_{1}$.

Proof. First assume that $M \in A B \cap \omega$ such that $A \in(M B)$.

Figure 7
Let \mathbf{I} be the inversion of pole M and power $k=M A \cdot M B$. Denote $\Delta=\mathbf{I}(\omega)$. The perpendicular bisector of the line-segment $(A B)$ meets Δ in X. Then can take ω_{1} the circle with center X passing through A, B. Indeed, the curves ω_{1} and Δ are perpendicular. The inversion preserves the angles, thus $\omega_{1}=\mathbf{I}\left(\omega_{1}\right)$ and $\omega=\mathbf{I}(\Delta)$ are also perpendicular. That means that the circles ω_{1} and ω are orthogonal. Finally,
assume that $A B \cap \omega=\emptyset$. It results that A, B lie outside ω. Let \mathbf{I} be the inversion with center O and power $k=r^{2}$, where O is the center of ω and r is its radius. Then the points $A^{\prime}=\mathbf{I}(A)$ and $B^{\prime}=\mathbf{I}(B)$ lie inside ω. In particular, $A^{\prime} B^{\prime} \cap \omega \neq \emptyset$. We proved that we can find a circle ω_{1} orthogonal on ω such that $A^{\prime}, B^{\prime} \in \omega_{1}$. Then the circle $\omega_{2}=\mathbf{I}\left(\omega_{1}\right)$ is orthogonal on ω because $\mathbf{I}(\omega)=\omega$. Moreover, $A, B \in \omega_{2}$

Proposition 2.3. Let there be given two points A, B and a circle ω. Assume that A, B does not lie both on ω. Then there exists an unique circle ω_{2} passing through A, B and meeting ω in two antipodal points.

Proof. Let I be the inversion of center O and power $k=-r^{2}$, where O is the center of ω and r is its radius. It is well known that inversions with negative power invariate the circles which intersect the inversion circle in two antipodal points.

Figure 8
Let $A^{\prime}=\mathbf{I}(A)$ and $B^{\prime}=\mathbf{I}(B)$.
Then the circumcircle ω_{2} of the quadrilateral $A B^{\prime} A^{\prime} A$ is invariant under the inversion I. Hence ω_{2} intersects ω in two antipodal points.

References

[1] Brânzei, D., Mortici, C., Metoda inversiunii in geometrie, Editura Plus, 2000
[2] Mortici, C., Probleme pregătitoare pentru concursurile de matematică, Ed. Gil, Zalău, 1999
[3] Mortici, C., Sfaturi matematice, Editura Minus, Târgovişte, 2007
[4] Miron, R., Brânzei, D., Backgrounds of Arithmetic and Geometry. An Introduction, World Scientific, Singapore, 1995

DAN Brânzei
A. I. Cuza University

Department of Mathematics
BD. Copou 11
700460 IAŞI, ROMANIA
E-mail address: dabran@uaic.ro
Cristinel Mortici
Valahia University
Department of Mathematics
BD. Unirii 18
130082 TÂRGOVIşTE, ROMANIA
E-mail address: cmortici@valahia.ro

